לוגיקה לא פורמלית
שקילויות לוגית בסיסיות, גרירה לוגית, טאוטולוגיות ופסוקים שקריים, הטאוטולוגיות החשובות, למשל: חוקי הפילוג ונוסחאות דה-מורגן.
תורת קבוצות אלמנטרית
אקסיומת ההקפיות. סימון של קבוצות. יחס ההכלה. פעולות בקבוצות.
המשך פעולות בקבוצות. איחוד מוכלל וחיתוך מוכלל. מקומיות של פעולה. זהויות בקבוצות. פעולת קבוצת החזקה.
יחסים
זוג סדור. רכיב ראשון ורכיב שני. הפכי של זוג סדור. הגדרת יחס כקבוצה של זוגות סדורים. הפכי של יחס. פעולות ביחסים. תחום וטווח של יחס. מכפלה קרטזית.
פונקציות
הגדרת פונקציה. פעולות ששומרות על ”פונקציה“. איחוד כלשהו של פונקציות המסכימות על תחומיהן. בפרט, איחוד זר. פונקציות חח“ע. הרכבות. פונקיות על.
תכונות יחסים
סימטרי, טרנזיטיבי. הגדרת יחס על קבוצה. רפלקסיביות על קבוצה. אנטי סימטריה.
קבוצות סדורות
הגדרת יחס סדר חלקי על קבוצה. איבר מזערי ואיבר מרבי. מינימום ומקסימום. מינימום הוא מזערי יחיד. דוגמא לקס“ח עם מרבי/מזערי יחיד ללא מינימום וללא מקסימום. קבוצה סדורה קווית.
יחסי שקילות
הגדרת יחס שקילות מעל קבוצה. מחלקות שקילות. מנה. הגדרת חלוקה. שחזור יחס שקילות מחלוקה. קדם סדר. יחס שקילות מקדם סדר. הגדרת קס“ח על המנה. הגדרות באמצעות בחירת נציגים.
המספרים הטבעיים.
הגדרה, עיקרון האינדוקציה, אינדוקציה שלמה.
קבוצות סופיות
הגדרה של קבוצה סופית. משפט: בקס“ח סופית יש מזערי מתחת לכל איבר. מסקנה: בקס“ח סופית, מזערי יחיד הוא מינימום. n-יות סדורות.
עוצמות
שקילות בין קבוצות. השוואה בין קבוצות, משפט קנטור–ברנשטיין. תת-קבוצות של הטבעיים. חסימות וסופיות. קבוצות בנות מניה. עצמות קבוצות חזקה. הישר הממשי.