דצמ 31, 2023—מרץ 15, 2024

קורסים

  1. מבוא. קבוצות, תת-קבוצות, תמורות, פונקציות, חלוקות. איברים בלתי-ניכרים (זהים), מולטי-קבוצות, אלגברה בינרית של תת-קבוצות. כללי סכום וכפל, קונוולוציות, ספירת זוגות. מקדמים בינומיאליים ומולטינומיאליים. מספרי סטירלינג מהסוג השני (הגדרה ומשואת נסיגה).
  2. גרפים. מושג כללי של גרף, דוגמאות, איזומורפיזם. קשירות. גרפי אוילר. עצים. משפט קיילי. גרפים דו-חלקיים, משפט קניג. משפט הול.
  3. שיטת ההכלה ודחיה. נוסחה אנליטית למספרי סטירלינג. ספירת תמורות תחת אילוצים. פולינום הצריח.
  4. פונקציות יוצרות. מושג כללי של פ“י. משמעות קומבינטורית של פ“י. תורת משואות הנסיגה עם מקדמים קבועים: הפתרון הכללי למשוואה הומוגנית, המקרה הכללי למשואה הומוגנית, המקרה הכללי ומקרה פרטי של אי הומוגניות. מספרי קטלן. פירוקי מספרים, לוחות פרה. פ“י אקספוננציאליות, ספירת מילים, חלוקות וכד‘.

מטרת הסדנה ללוות את תלמידי מתמטיקה בשנה א ולשפר את המיומנויות שלהם בכל הנוגע לכתיבת הוכחות פורמאליות. במסגרת הסדנה, התלמידים יעבדו בקבוצות קטנות על כתיבת הוכחות, עם דגש על נושאים שמתקשרים לקורסי היסוד של שנה א.

אקסיומות של המספרים הממשיים, סדרות: מושג הגבול, סדרות מונוטוניות משפט בולצנו ויירשטראס, תנאי קושי, המספר e. גבולות של פונקציות. פונקציות רציפות: הגדרות שקולות של רציפות, תכונות הפונקציות האלמנטריות, פונקציית האקספוננט, משפט ערך הביניים, קיום אקסטרמום בקבוצה סגורה וחסומה, רציפות במידה שווה ומשפט קנטור. מבוא לנגזרות: הגדרת הנגזרת וכללי גזירה, נגזרת של פונקציה הפוכה, נגזרות של פונקציות אלמנטריות, משפטי פרמה ורול, משפט הערך הממוצע של לגרנז‘

  • מספרים מרוכבים. שדות: הגדרה ותכונות, דוגמאות.
  • מערכות משוואות לינארית. שיטת הדירוג של גאוס
  • מטריצות ופעולותיהן. מטריצות הפיכות
  • דטרמיננטה: הגדרה ותכונות. מטריצה מצורפת. כלל קרמר
  • מרחבים וקטורים ותת מרחבים פרישה ותלות לינארית. בסיס וממד. קואורדינטות ביחס לבסיס נתון
  • העתקות לינאריות. גרעין ותמונה. איזומורפיזם. מטריצה של העתקה בין שני מרחבים וביחס לבסיסים נתונים.
  • מרחב ההעתקות בין שני מרחבים. מרחב דואלי.
  • חבורה כסמטריה. דוגמאות: חבורות ציקליות, דיהדרלית, סמטריות. חבורות מטריצות.
  • הומומורפיזם. תת חבורות ותת חבורות נורמליות. חבורות מנה. משפט לגרנז‘. משפטי האיזומורפיזם. מכפלה ישרה של חבורות.
  • פעולה של חבורה על קבוצה. משפט קיילי.
  • אוטומורפיזמים של חבורות.
  • משפטי סילו ומיון חבורות מסדר נמוך.
  • סדרת הרכב ומשפט ז‘ורדן-הולדר. חבורות פתירות.
  • מיון חבורות חילופיות נוצרות סופית.
  • חבורה סימטרית וסידרת הרכב שלה.
  • חוגים. אידאלים ראשוניים ומקסימליים. תחום שלמות. חוג מנה. משפטי הומומורפיזם.
  • אלגברה מולטילינארית: מרחבי מנה. מכפלה טנזורית של מרחבים וקטוריים. פעולה על חבורה סמטרית על חזקות טנזוריות. אלגברה סימטרית ואלגברה חיצונית. תבניות מולטילינאריות ודטרמיננטה.
  • נושאי רשות: חבורות סימטריות של פאונים משוכללים. חבורות חופשיות. מכפלה חצי-ישרה. תורת ההצגות של חבורות סופיות.

סיגמא-אלגבראות, משפט הרחבת המידה ומידת לבג על הישר, מרחבי מידה כלליים, פונקציות מדידות, תורת האינטגרציה, משפטי התכנסות (משפט אגורוב, התכנסות במידה, כמעט תמיד ובנורמות $L_p$), משפט לוזין, מרחבי $L_p$, מידות במרחבי מכפלה ומשפט פוביני, מידות מסומנות ומרוכבות ופירוק האן, משפט רדון ניקודים ושימושים, גזירה, נושאים נוספים ככל שיתיר הזמן.

  1. מבוא ורקע היסטורי: התכנית של הילברט-וויטהד, הפרדוקסים בתורת הקבוצות, משפטי אי-תלות.
  2. תחשיב היחסים מסדר ראשון: נוסחאות, מבנים, ספיקות של נוסחה במבנה, אמת לוגית. תחשיב עם שוויון ובלעדיו.
  3. משפט השלמות של גדל: מערכות היסק בתחשיב הפסוקים. משפט השלמות לתחשיב הפסוקים. משפט השלמות לתחשיב היחסים. משפט קיום המודל, משפט הקומפקטיות לתחשיב היחסים. שימושים ומסקנות (משפט לוונהים סקולם העולה).
  4. משפט האי-שלמות הראשון של גדל: הצפנות, משפט נקודת השבת של גדל, משפט האמת של טרסקי.
  5. מסקנות ממשפט האי-שלמות של גדל, ככל שיתיר הזמן. 6

גרפים ותת גרפים, עצים, קשירות, מסלולי אוילר, מעגלים המילטוניים, זיווגים, צביעות של גרפים, גרפים מישוריים, מבוא לתורת רמזי, גרפים מכוונים, שיטות הסתברותיות ואלגבריות בתורת הגרפים.

מבוא למושגים הבסיסיים של תורת ההסתברות:

מרחבי הסתברות גבולות של מאורעות ורציפות של הסתברות הסתברות מותנה אי-תלות של מאורעות סיגמה-אלגבראות, מרחבים רציפים, ומידת לבג משתנים מקריים והתפלגויות אי-תלות התפלגויות משותפות והתפלגויות מותנות תוחלת שונות ושונות משותפת התכנסות של משתנים מקריים: כמעט-תמיד, Lp, בהסתברות חוק המספרים הגדולים התכנסות בהתפלגות משפט הגבול המרכזי

עקב הערכות מיוחדת בעקבות המלחמה, יוצגו רק חלק מהנושאים, בהתאם להתקדמות בפועל. פרטים נוספים בעמוד הקורס

  1. טרנספורם פורייה: קונבולוציות, נוסחת ההיפוך, משפט פלנשרל, פונקציות הרמיט, דיסטריבוציות. נוסחת הסכום של פואסון. טרנספורם
  2. פורייה רב-מימדי. טרנספורם לפלס. קשר לקונבולוציות וטרנספורם פורייה. פולינומי לגר. יחידות ומשפט לרץ‘. שימושים למשוואות דיפרנציאליות רגילות.
  3. מיון של משוואות דיפרנציאליון חלקיות מסדר שני: משוואות אליפטיות, היפרבוליות ופרבוליות. משוואות לפלס, הגלים והחום.
  4. משוואות אליפטיות: משוואות לפלס ופואסון. בעיות שפה של דיריכלה ונוימן. גרעין פואסון. תכונות של פונקציות הרמוניות, עקרון המקסימום.
  5. שיטות אנליטיות לפתרון משוואות דיפרנציאליות חלקיות: בעיית שטורם-ליוביל ושיטת הפרדת המשתנים בתחום חסום. שימושים למשוואות לפלס, הגלים והחום, לרבות בעיות לא הומוגניות. שימושים של טרנספורם פורייה ולפלס לפתרון בעיות בתחומים לא חסומים.

ביבליוגרפיה

1. Stein E. and Shakarchi R., Fourier analysis, Princeton University Press, 2003. 2. Korner T.W., Fourier analysis, Cambridge University Press, 1988. 3. Katznelson Y., An Introduction to Harmonic Analysis, Dover publications. 4. John, Partial differential equations, Reprint of the fourth edition. Applied Mathematical Sciences, 1. Springer-Verlag, New York, 1991. 5. Evans Lawrence C. Partial Differential Equations, Second Edition. 6. Gilbarg D.; Trudinger N. S. Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in Mathematics. Springer-Ver lag, Berlin, 2001. 7. Zauderer E. Partial differential equations of applied mathematics, Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1989. xvi+891 pp. ISBN: 0-471-61298-7.

מרחבים מטריים ונורמיים. שקילות הנורמות במרחבים סוף מימדיים. קומפקטיות ומשפט היינה-בורל. התכנסות של סדרות וטורים של פונקציות נקודתית, במידה שווה ובנורמות אחרות. גזירה ואינטגרציה איבר-איבר של טורי פונקציות, שימושים לטורי חזקות. שלמות: שלמות של מרחב הפונקציות הרציפות בקטע סגור ובמרחב מטרי קומפקטי, בוחן $M$ של ויירשטראס. משפט הקטגוריה של בייר, פונקציונלים לינאריים חסומים ומשפט בנך-שטיינהאוס. קומפקטיות במרחבי פונקציות ומשפט ארצלה אסקולי. מבוא לטורי פורייה: סכימת צ‘זרו, קונבולוציות ומשפט פייר. משפט הקירוב של ויירשטראס. התכנסות ב-$L^2$. התכנסות נקודתית, גרעין דיריכלה וקריטריון דיני.

קבוצות פתוחות, סגורות, קומפקטיות במרחב האוקלידי. נורמות מטרציאליות ושקילות הנורמות. גבולות ורציפות בכמה משתנים. מסילות וקשירות מסילתית. נזגרות חלקיות וכווניות, הגרדיינט ומושג הדיפרנציאביליות. משפטי הפונקציה הסתומה, הפתוחה וההפוכה. כופלי לגרנז‘. אופטימיזציה, מטריצת ההסיאן ונקודות קריטיות. אינטגרל רימן הרב-מימדי: משפט פוביני, משפט שינוי המשתנה.

  • יריעות טופולוגיות. חבורה יסודית ומרחבי כיסוי. שימושים.
  • הומולוגיה סינגולרית ושימושים.
  • יריעות גזירות. תבניות דיפרנציאליות ומשפט Stokes. הגדרת קוהומולגית de Rham
  • נושאים נוספים אם ישאר זמן
  1. גרפים מרחיבים ושימושיהם - הגדרות שקולות (הרחבה ספקטרלית, קבוע צ‘יגר, א“ש בוזר–צ‘יגר), למת הערבוב, משפט אלון–בופנה, שימושים, בניות מפורשות והסתברותיות
  2. תכונת T של קשדן - מבוא קצר להצגות של חבורות (סופיות ואינסופיות), גרפי קיילי ושרייר, תכונת T — הגדרה + תכונות, דוגמאות, בניית גרפים מרחיבים באמצעות תכונת T.
  3. נושאים נוספים (ככל שירשה הזמן ובהתאם לטעם של התלמידים) - בניית הזיג-זג, משפטי נקודת שבת (על עצים/על מרחבי הילברט), הרחבה בקומפלקסים סימפליציאליים ועוד.

מרחבי בנך ומרחבי הילברט. תכונות בסיסיות של מרחבי הילברט. מרחבים וקטורים טופולוגיים. משפט בנך-שטיינהאוס (עקרון החסימות במידה שווה), משפט ההעתקה הפתוחה ומשפט הגרף הסגור. משפט האן-בנך. דואליות. מידות על מרחבים קומפקטיים מקומית, המרחב הדואלי של $C(X)$. טופולוגיות חלשות וחלשות-$*$, משפט בנך-אלאוגלו. קמירות ומשפט קריין-מילמן. משפט סטון-ויירשטראס. אופרטורים קומפקטיים על מרחב הילברט. מבוא לאלגבראות בנך ולתורת גלפנד. נושאים נוספים ככל שיתיר הזמן.

  1. תורת קבוצות נאיבית: שייכות והכלה, חיתוך, איחוד, הפרש, קבוצת חזקה, חלוקות, זוגות סדורים, מכפלה קרטזית.
  2. יחסים: תחום, תמונה, הרכבה, הזהות על קבוצה. תכונות בסיסיות.
  3. העתקות: הגדרה, הפיכות משמאל ומימין, חח“ע ועל, אקסיומת הבחירה, הדבקה של העתקות
  4. גרפים (יחסים מעל קבוצה): רפלקסיביות, סימטריות, אנטי-סימטריות, טרנזיטיביות. תאור באמצעות פעולות. העתקות בין גרפים, שיכונים, העתקות הפיכות. שמירה על תכונות תחת העתקות.
  5. יחסי סדר: הגדרות, איברים מקסימליים ומינימליים, מינימום ומקסימום, עוקב מיידי, חסם עליון. סדר חלקי הוא מלא אם ורק אם הוא מקסימלי ביחס להכלה. סדרים על מכפלות קרטזיות.
  6. יחסי שקילות: גרעין של העתקה, העתקות מנה (קיום ויחידות), הגדרת מבנה על המנה, סדר מתוך קדם סדר.
  7. המספרים הטבעיים: הגדרה כקבוצה סדורה, אינדוקציה (רגילה ושלמה), משפט ההגדרה ברקורסיה, יחידות הטבעיים (עד כדי איזומורפיזם יחיד), הגדרת פעולות החשבון
  8. קבוצות סופיות: גודל של קבוצה, הגדרה של קבוצה סופית, עקרון שובך יונים, תכונות של קבוצות סדורות סופיות
  9. ~~עוצמות: הגדרת שוויון עוצמות וסדר בין עוצמות, עוצמות של תתי-קבוצות של הטבעיים, 0א מינימום בין העוצמות האינסופיות, משפט קנטור–ברנשטיין, משפט קנטור, עוצמת הממשיים, חוקי חשבון עוצמות.~~

שדות ומטריצות, מרחבים וקטוריים מעל שדה, משוואות ליניאריות מעל שדה, דטרמיננטות, מרחבים דואליים, טרנספורמציות ליניאריות.

1) מרחב ההסתברות2) הסתברות מותנית, אי-תלות מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.3) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, בינומית, גיאומטרית, היפרגאומטרית, בינומית שלילית, פואסון.4) משתנה מקרי רציף. התפלגויות רציפות: אחידה, מעריכית, נורמלית.5) משתנה מקרי דו-מימדי בדיד, אי-תלות של משתנים מקריים.6) תוחלת, שונות, מקדם המתאם.7) אי-שייון צ‘בישב, חוק המספרים הגדולים.8) משפט הגבול המרכזי, קירוב נורמלי.

  1. מושג הגבול, גבול של פונקציה.2. רציפות, רציפות חד-צדדית. 3. הנגזרת וכללי הגזירה היסודיים, נגזרות הפונקציות הטריגונומטריות. 4. גזירת פונקציות הפוכות ופונקציות סתומות. 5. מקסימום ומינימום. הערך הגדול ביותר של פונקציה רציפה בקטע. 6. משפט הערך הממוצע וחקירת הפונקציה. 7. נגזרת שנייה ושימושיה. קמירות וקעירות, שירטוט גרפים. 8. חישוב גבולות לביטויים לא מוגדרים. משפט לופיטל. 9. הדיפרנציאל וקרוב מסדר ראשון. משפט טיילור וקרובים מסדר גבוה. 10. אינטגרציה: הגדרה. כל פונקציה רציפה היא נגזרת. 11. שיטות אינטגרציה. הצבה, חלקים. 12. משוואה דיפרנציאלית ותנאי התחלה, פתרון על ידי הפרדת המשתנים. 13. האינטגרל המסויים. שטחים, האינטגרל כפונקציה של הגבול העליון. 14. אינטגרציית פונקציות רציונליות על-ידי שברים חלקיים. 15. אינטגרציה על-ידי הצבות טריגונומטריות. 16. אינטגרלים לא-אמיתיים. 17. נפח גוף סיבוב. 18. אורך עקומה. 19. קואורדינטות קטביות. 20. גרפים בקואורדינטות קטביות. 21. אורך עקומה ושטח בקואורדינטות קטביות.
  1. וקטורים במישור ובמרחב. מכפלה סקלרית ומכפלה ווקטורית. ישרים, מישורים ושטחים במרחב.
  2. פונקציות ווקטורית. מהירות, תאוצה, וקטור משיק, אורך עקומה, עקמומיות.
  3. פונקציות של מספר משתנים. נגזרות חלקיות, דיפרנציאביליות ודיפרנציאל, כלל השרשרת, נגזרת מכוונת, גרדינט, מישור משיק, פולינום טיילור, מקסימום ומינימום.
  4. אינטגרל מרובה. אינטגרל כפול ומשולש, שטח פנים.
  5. שדות ווקטורים. אינטגרל קווי ואינטגרל משטחי. משפט גרין, משפט הדיברגנס ומשפט סטוקס.
  6. טורי מספרים. מבחני התכנסות לטורים חיובים, התכנסות בהחלט, התכנסות טורים עם סימנים מתחלפים.
  7. טורי חזקות. רדיוס התכנסות, התכנסות בקצוות, גזירה ואינטגרציה של טורי חזקות.
  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה ושימושיהם: חזרה על טורי פונקציות. פיתוחי פורייה ותכונות של טורי פורייה, התכנסות של טורי פורייה, תופעת גיבס. שימושים למשוואת החום.
  3. שימושים נוספים ככל שיתיר הזמן.

פונקציות אלמנטריות בסיסיות. פונקציות חד-חד ערכיות, הפוכות, מונוטוניות, זוגיות ואי זוגיות. פונקציה מורכבת. גבול של פונקציה. המספר e. גבולות חד-צדדיים. רציפות של פונקציה. תכונות של פונקציה רציפה. 2. מושג הנגזרת. כללי גזירה. נגזרת מסדר גבוה. נגזרת של פונקציה מורכבת. כלל לופיטל. חישוב גבולות. דיפרנציאל. 3. חקירת פונקציה. תחומי עליה וירידה, קמירות וקעירות. נקודות פיתול. מקסימום ומינימום מקומיים. אסימפטוטות. חקירה מלאה של פונקציה. גמישות. שימושים בכלכלה.4. פונקציה קדומה ואינטגרל לא מסויים. כללי אינטגרציה. אינטגרלים מידיים. האינטגרל המסוים. חישוב שטחים. שימושי האינטגרל בכלכלה. אינטגרלים לא אמיתיים. 5. מושג הפונקציה של כמה משתנים. עקומות שוות ערך. נגזרות חלקיות מסדר שני. דיפרנציאל שלם. כלל השרשרת. פונקציות סתומות ונגזרתן. פונקציות הומוגניות ותכונותיהן. 6. אקסטרמום של פונקציה של שני משתנים. מקסימום ומינימים מקומי. תנאי הכרחי לקיום אקסטרמום מקומי. תנאי מספיק. אקסטרמום בתנאי. שיטת כופלי לגרנז‘. 7. מטריצות. מושגים יסודיים על מטריצות. פעולות אלמנטריות במטריצות. מטריצה הפוכה. פתרון מערכת של משוואות ליניאריות בעזרת מטריצה הפוכה.

  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה: חזרה על טורי פונקציות. פיתוחי פורייה ותכונות של טורי פורייה, התכנסות של טורי פורייה, תופעת גיבס. שימושים למשוואות דיפרנציאליות רגילות מחזורית.
  3. טרנספורם לפלס, שימושים למשוואות דיפרנציאליות רגילות.
  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים.
  2. מערכת משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס.
  3. מרחבים וקטוריים: דוגמאות (מרחב אוקלידי דו- ממדי ותלת- ממדי, מרחבי פונקציות, מרחבי מטריצות),מושגים בסיסיים, בסיס ומימד של מרחב וקטורי. ישום מרחבים וקטוריים בפתרונות של מערכות משואות ליניאריות.
  4. מטריצה הופכית, דטרמיננטה, מכפלה סקלרית.
  5. טרנספורמציות ליניאריות: גרעין ותמונה, מטריצה של טרנספורמציה, החלפת בסיס.
  6. ערכים עצמיים, מציאת וקטורים עצמיים ולכסון מטריצות.
  1. מערכת המספרים הממשיים, אי שיויונים במספרים ממשיים, מערכת המספרים המרוכבים, ההצגות הקרטזית, הפולרית והמעריכית, משפט ד‘מואבר, חישוב שורשים.
  2. מערכות משוואות לינאריות מעל המספרים הממשיים או המרוכבים, קבוצת הפתרון והצגתה הפרמטרית, מטריצות מדורגות, ומטריצות מדורגות מצומצמות, הצבה לאחור והצבה לפנים וסיבוכיות התהליכים, אלגוריתם הדירוג של גאוס וסיבוכיותו, אלגוריתם הצימצום וסיבוכיותו
  3. המרחב הוקטורי, תת-מרחבים וקטוריים, צירופים לינאריים, המרחב הנפרש ע“י קבוצת וקטורים, תלות ואי-תלות לינאריים, המימד של מרחב וקטורי, מרחבי שורה ומרחבי עמודה של מטריצות, הדרגה של מטריצה.
  4. העתקות לינאריות בין מרחבים וקטוריים, העתקות הפיכות ואיזומורפיזמים, הצגה מטריצית של העתקות לינאריות סוף מימדיות, היפוך מטריצות ריבועיות, הרכבת העתקות, כפל מטריצות, האלגברה של מטריצות, הגרעין והתמונה של העתקה לינארית וחישוב בסיסים עבורם, מעבר בין בסיסים, משפט המימד עבור העתקות לינאריות המשלים האורתוגונלי ,Cauchy-Schwarz 5. מרחבי מכפלה פנימית, נורמה, קבוצות אורתונורמליות, אי שיויון טרנספורמציות אורתוגונליות ומטריצות ,Gram-Schmidt של תת-מרחב, סדרות אותוגונליות, האלגוריתם של אורתוגונליות. , Laplace המטריצה הנילוית ונוסחת , Laplace 6. הדטרמיננט של מטריצה ריבועית, מינורים וקופקטורים, פיתוחי טרנספורמציות דימיון ואינוריאנטות שלהן ( הדטרמיננט והעכבה). ,P ע“י מטריצה הפיכה A הצמדה של מטריצה
  5. ערכים עצמיים, וקטורים עצמיים ומרחבים עצמיים, ליכסון ודימיון, הפולינום האופייני, הריבוי האלגברי והריבוי הגיאומטרי של ערך עצמי, משפט הספקטרלי עבור מטריצות הרמיטיות. Syllabus

מושגי יסוד, שדות כוונים. משוואות דיפרנציאליות מסדר ראשון, משוואות ספרביליות ומדויקות, גורם אינטגרציה. שיטות ישירות לפתרון משוואות דיפרנציאליות מסדר ראשון, משוואות ברנולי. קירובי אוילר. דוגמאות, גידול אוכלוסיה. משוואות דיפרנציאליות מסדר שני. משוואות עם מקדמים קבועים, מרחב הפתרונות, הורונסקיאן. משוואות לא הומוגניות, וריאציה של הפרמטרים. מערכות של שתי משוואות מסדר ראשון עם מקדמים קבועים. דוגמאות ושימושים.

גבולות ורציפות של פונקציות, יישומים פונקציות גזירות, יישומים כללי גזירה, גזירה של פונקציות סתומות, יישומים חקירת פונקציות, פונקציות מרובות משתנים, נגזרות חלקיות, יישומים האינטגרל המסוים, האינטגרל הלא מסוים, יישומים של אינטגרלים, טכניקות אינטגרציה, פולינומי טיילור, משוואות דיפרנציאליות פשוטות

  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים. מערכות משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס. 2. מרחבים וקטוריים: דוגמאות, מושגים בסיסיים, בסיס ומימד של מרחב וקטורי. ישום מרחבים ווקטוריים בפתרונות של מערכות משואות ליניאריות. 3. מטריצה הופכית, דטרמיננטות. 4. מכפלה סקלרית, אורתוגונליות ותהליך גראם שמידט.5. טרנספורמציות ליניאריות: גרעין ותמונה, מטריצה של טרנספורמציה, החלפת בסיס.6. ערכים עצמיים, מציאת וקטורים עצמיים ולכסון מטריצות.

. מד‘’ח לינאריות מסדר 2: מיון, צורה קנונית.2. טורי פוריה (הגדרה, משפט פוריה, המשכיות זוגית ואי-זוגית, נגזרת, התכנסות במידה שווה).3. דוגמאות: משוואת החום (בעיות דיריכלה וניומן), משוואת הגלים (mixed type problem), משוואת הפוטנציאל על מלבן.4. סופרפוזיציה של פתרונות; משוואות אי-הומוגניות.5. משוואת החום האי-סופית והחצי אי-סופית: אינטגרל פוריה, פונקציית גרין, עקרון דוהמל.6. משוואת הגלים האיסופית והחצי אי-סופית: פתרון דלמבר.7. משוואת הפוטנציאל על העיגול: נוסחת פואסון, פתרון כטור.

תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. עקרון החיבור ועקרון הכפל . חליפות, תמורות וצירופים . בינום של ניוטון. עקרון האינדוקציה. עקרון ההכלה וההפרדה. עקרון שובץ ויוניםנוסחאות רקורסיה. פונקציה יוצרת.יחסים ופונקציות. תכונות של יחסים .יחס שקילות. מחלקת השקילות . קבוצת המנה. יחסי סדר. תכונות של פונקציות. פונקציות על ופונקציות חח‘’ע. הרכבת פונקציות .פונקציה הפיכה. פונקציה הפוכה.גרפים, תת גרפים, משלים. איזומורפיים של גרפים. נוסחת אוילר. גרפים מישורים. מעגלי ומסלולי אוילר.עציםתחשיב הפסוקים. פעולות על פסוקים. נוסחאות לוגיות. טאוטולוגיות וסתירות. שקילות לוגית. גרירות לוגית. צורה הדיסיונקטיבית הנורמלית של פסוק. דואליות. מערכות שלמות של קשרים.תחשיב היחסים . כמתים. שפת תחשיב הפרדיקטים. נוסחאות. מבנים. שקילות של נוסחאות. פעולות על נוסחאות עם כמתים. צורה פרנכסית נורמלית.מבנים אלגבריים. חבורות, חוגים. ושדות. חוג השלמים מדולו n. אלגברה בוליאנית.

  1. המספרים הממשיים. סופרימום ואינפימום של קבוצה. 2. סדרות מתכנסות. תת-סדרות. סדרות קושי. משפט בולצנו-ויירשטראס. גבולות עליונים ותחתונים. 3. טורים. סכומים חלקיים. טורים מתכנסים ומתבדרים. תנאי קושי. טורים של מספרים אי-שליליים. מבחני השורש והמנה. טורים כלליים. מבחן לייבניץ לטורים עם סימנים מתחלפים. שינוי סדר הסכימה (ללא הוכחה). 4. גבול של פונקציה. פונקציות רציפות. רציפות של פונקציות אלמנטאריות. תכונות של פונקציות רציפות בקטע סגור: חסימות וקיום האקסטרמום. רציפות במידה שווה, משפט קנטור. 5. הנגזרת של פונקציה. משפט הערך הממוצע. נגזרות מסדר גבוה. כלל לופיטל. משפט טיילור. שארית לגרנז‘.
  1. פונקציות. תחום הגדרה וטווח. גרף. מונוטוניות, זוגיות, מחזוריות. הרכבת פונקציות. פונקציה הפוכה.
  2. סדרות. גבולות של סדרות.
  3. גבול של פונקציה בנקודה. רציפות.
  4. נגזרת. משמעות גאומטרית ופיסיקלית. כללי שרשרת. נגזרות מסדר גבוה.
  5. משפט לגרנז‘ (משפט הערך הממוצע לפונקציות גזירות). כללי לופיטל.
  6. בעיות קיצון. אקסטרמומים של פונקציה רציפה בקטע סגור.
  7. חקירת פונקציות ובניית גרפים.
  8. דיפרנציאל. קירוב ליניארי. נוסחאות טיילור ומקלורן.
  9. אינטגרל בלתי מסוים. הגדרה ותכונות. אינטגרלים מידיים.
  10. הצבה ואינטגרציה לפי חלקים.
  11. אינטגרל מסוים. נוסחת ניוטון - ליבניץ. משפט הערך הממוצע לפונקציות רציפות. אינטגרל לא אמיתי.
  12. חישוב שטחים, אורכי עקומה ונפחי גופי סיבוב. חישוב מסה ומרכז כובד.
  13. קאורדינטות קוטביות. חישוב שטחים ואורכי עקומה בקואורדינטות קוטביות.
ספרות:
  1. G.B. Thomas and L.R. Finney, Calculus and Analytic Geometry, 9th Ed, Addison-Wesley (World Student Series), 1996.

  2. ה.אנטון, חשבון דיפרינציאלי ואינטגרלי א‘, האוניברסיטה הפתוחה, רמת אביב, תל-אביב, תשנ“ט, 1999.

. מרחב הסתברות: מרחב מדגם, פונקציה הסתברות, מרחב הסתברות סימטרי סופי, קומבינטוריקה. הסתברות גיאומטרית. הסתברות מותנית, אי-תלות של מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.2. משתנה מקרי בדיד, התפלגויות מיוחדות: אחידה, בינומית, גיאומטרית, בינומית שלילית, היפרגיאומטרית ופואסונית, תהליכי פואסון. 3. משתנה מקרי רציף, פונקצית צפיפות, פונקצית התפלגות מצטברת. התפלגויות מיוחדות: אחידה, מעריכית, גמה ונורמלית. טרנספורמציה של משתנה מקרי מעורב.4. התפלגות של מקסימום ומינימום. משתנה מקרי מעורב.5. מומנטים של משתנה מקרי. תוחלת ושונות, אי-שוויון צ‘בישב.6. וקטור מקרי, פונקציית הסתברות משותפת, צפיפות משותפת, התפלגויות שוליות.7. משפט הגבול המרכזי. קירוב נורמלי. חוק המספרים הגדולים.

  1. חשבון אינטגרלי ושימושיו: האינטגרל המסוים וסכומי רימן, אינטגרביליות של פונקציות חסומות בעלות מספר בן מנייה של נקודות אי-רציפות (ההוכחה רק עבור פונקציות רציפות ופונקציות מונוטוניות), פונקציות קדומות והמשפט היסודי של חדו“א. שיטות אינטגרציה: אינטגרציה בחלקים, החלפת משתנה, שברים חלקיים (ללא הוכחה). שימושים של האינטגרל לחישובי שטח, נפח גוף סיבוב ואורך המסילה. אינטגרל לא אמיתי ומבחני התכנסות עבור פונקציות חיוביות. שימוש להתכנסות של טורים.
  2. פונקציות מרובות משתנים: קבוצות פתוחות, קבוצות סגורות וקבוצות קומפקטיות. פונקציות מרובות משתנים, גרף של פונקציה, קווי ומשטחי רמה, העתקות, מסילות, קשירות מסילתית.
  3. גבולות ורציפות: הגדרות, האריתמטיקה של גבולות, משפטי ווירשטראס, משפט ערך הביניים.
  4. חשבון דיפרנציאלי במספר משתנים: נגזרות חלקיות וכיווניות, דיפרנציאביליות והמישור המשיק, כלל השרשרת, האורתוגונליות של הגרדיאנט לקווי ומשטחי רמה, פונקציות סתומות, משפט הפונקציה הסתומה עבור עקום במישור ומשטח במרחב (ללא הוכחה), ההסיאן, קירוב טיילור מסדר שני, נקודות קריטיות ומיונן (המיון רק במימד 2). בעיות קיצון: כופלי לגרנז‘, מורד הגרדיאנט.
  5. חשבון אינטגרלי במימד 2: האינטגרל המסוים במימד 2, אינטגרל חוזר והחלפת סדר האינטגרציה, החלפת משתנים (ללא הוכחה), קואורדינטות קוטביות, שימוש באינטגרל לחישובי נפחים. ככל שיאפשר הזמן: אינטגרל במימד 3.
  1. פעולות על קבוצות, סימון לוגי, יחסים.

  2. מניה בסדר של אובייקטים קומבינטוריים: מספרים שלמים, פונקציות, עיקרונות ראשונים של פירוט.

  3. קומבינטוריקה אלמנטרית: קבוצות, רב-קבוצות וסידוריהן; מקדמים בינומיאליים ומולטינומיאליים.

  4. עקרון ההכלה ודחייה, פונקצית אוילר.

  5. גרפים: הצגת גרפים ואיזומורפיזם.

  6. רקורסיה ופונקציות יוצרות: הגדרות רקורסיביות, פונקציות יוצרות רגילות ואקספוננציאליות, רקורסיה לינארית עם מקדמים קבועים.

  7. אריתמטיקה מודולרית: קונגרואנטיות של מספרים שלמים, $\mathbb{Z}_m$, האיברים ההפיכים ב-$\mathbb{Z}_m$.

  8. מבנים אלגבריים: אקסיומות ודוגמאות של חבורות, חבורות ותתי חבורות ציקליות, מחלקות ומשפט לגרנז‘. חוגים ושדות סופיים.

משוואות דיפרנציאליות רגילות מושגי יסוד: משוואות מסדר ראשון, פתרון כללי, בעיות תנאי התחלה, פתרון פרטי. משוואות לינאריות, עם משתנים נפרדים, מדויקות, הומוגניות. גורם אינטגרציה. משפט הקיום ויחידות (ללא הוכחה). מערכת משוואות לינאריות מסדר ראשון. פתרון בעזרת חשבון מטריצות. משוואות לינאריות מסדר שני. משוואות לא הומוגניות, וורונסקיאן. משוואת אוילר. משוואות ליניאריות מסדר n. התמרות אינטגרליותהתמרת לפלס, תכונות התמרת לפלס. קונבולוציה ומשפט הקונבולוציה. פונקצית הביסייד (מדרגה), פונקציות רציפות למקוטעין, פונקצית דלטה של דירק. פתרון משוואות ליניאריות לא הומוגניות באמצעות התמרת לפלס.התמרת פוריה, תכונות התמרת פוריה. קוסינוס וסינוס התמרת פוריה. קונבולוציה ומשפט הקונבולוציה. פתרון משוואות אינטגרליות באמצעות התמרת פוריה.

  1. טורים מספריים חיוביים וכלליים. התכנסות בהחלט ובתנאי. מבחני שורש והמנה. מבחן ליבניץ

  2. טורי חזקות.

  3. משוואות דיפרנציאליות מסדר ראשון: משוואות ניתנות להפרדת משתנים, משוואות מדויקות, משוואות לינאריות ומשוואות ברנולי. קיום ויחידות.

  4. משוואות דיפרנציאליות מסדר שני: שיטות להורדת סדר, משוואות לינאריות, ורונסקיאן, וריאציה של פרמטרים, משוואות לינאריות עם מקדמים קבועים ושיטת השוואת מקדמים. משוואות דיפרנציאליות מסדר $n$. משוואות אוילר.
  5. מערכות של משוואות דיפרנציאליות: שיטת חילוץ, שימוש באלגברה לינארית.
  1. מרחבים נורמיים ומרחבי מכפלה פנימית, הקירוב הטוב ביותר והטלות אורתוגונליות, מערכות אורתונורמליות. התכנסות במרחבים נורמיים. מערכות אורתונורמליות אינסופיות, שוויון פרסבל ומערכות אורתונורמליות שלמות.

  2. פולינומים אורתוגונליים. משפט הקירוב של ויירשטראס. שלמות של פולינומים אורתוגונליים בקטע סופי.

  3. טורי פורייה. שלמות, התכנסות נקודתית ותנאים להתכנסות במידה שווה.

  4. טרנספורם פורייה. משפט פלנשרל. נוסחת ההיפוך של פורייה. קונבולוציות. פולינומי הרמיט.

  5. משוואות שטורם-ליוביל בקטע סופי. אורתוגונליות של פונקציות עצמיות. קיום ושלמות של מערכת פונקציות עצמיות עבור בעיית שטורם-ליוביל רגולארית (עם הוכחה חלקית).

ביבליוגרפיה:
  1. Hartman, Philip. Ordinary differential equations. Corrected reprint of the second (1982) edition. With a foreword by Peter Bates. Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

  2. Jackson, Dunham. Fourier series and orthogonal polynomials. Reprint of the 1941 original. Dover Publications, Inc., Mineola, NY, 2004.

  3. K?rner, T. W. Fourier analysis. Second edition. Cambridge University Press, Cambridge, 1989.

  1. שדות: הגדרת שדה, מספרים מרוכבים.

  2. משוואות לינאריות: פעולות אלמנטריות, דירוג, מערכות הומוגניות ולא הומוגניות, הצגת פתרונות.

  3. מרחבים ווקטוריים: דוגמאות, תת-מרחבים,תלות ליניארית, בסיסים, מימד.

  4. חשבון מטריצות: חיבור וכפל מטריצות, פעולות אלמנטריות, מטריצה הופכית, דטרמיננטה, כלל קרמר.טרנספורמציות לינאריות: דוגמאות, גרעין ותמונה, הצגה מטריציאלית.

  1. פונקציות בעלות ערכים מרוכבים, האקספוננט המרוכב. טורי פורייה של פונקציות מחזוריות ורציפות למקוטעין. פעולות בסיסיות והשפעתן על מקדמי פורייה: הסטה, מודולוציה, קונבולוציה, נגזרת.
  2. התכנסות במידה שווה: ממוצעי צ‘זרו, גרעיני דיריכלה ופייר, משפט פייר. משפט הקירוב של ויירשטראס לפולינומים טריגונומטריים ולפולינומים. יחידות של מקדמי פורייה. הלמה של רימן-לבג. בעיית המומנטים של האוסדורף. התכנסות של סכומים חלקיים וטורי פורייה עבור פונקציות גזירות פעמיים ברציפות.
  3. התכנסות נקודתית: קריטריון דיני. התכנסות בנקודות קפיצה ותופעת גיבס.
  4. תורת $L^2$: סדרות אורתונורמליות ובסיסים אורתונורמליים. הקירוב הטוב ביותר, אי-שוויון בסל, שוויון פרסבל והתכנסות בנורמת $L^2$.
  5. שימושים למשוואות דיפרנציאליות חלקיות: משוואות החום והגלים בקטע עם תנאי שפה קבועים. בעיית דיריכלה עבור משוואת לפלס בדיסק, גרעין פואסון.

חובה להירשם במקביל לקורס 201.1.9631

.1 ספירת המצבים. קומבינטוריקה. חלקיקים ניתנים ולא ניתנים להבדלה. מערכים מסודרים ולא מסודרים. תמורות עם החזרה ובלי החזרה. צירופים עם ובלי החזרה. מערכת ספינים של 1/2. גז תאי. פרמיונים, פארה-פרמינונים, בוזונים. .2 ניסויים נשנים, תוצאות. הסתברות לפי תדירויות, לפי בייס ולפי קולמוגורוב, קשר בין הגישות. ניסויים ניתנים ולא ניתנים לשחזור. הסתברות ביקום שגודלו סופי. הסתברות ביקום מתפשט. הסתברות שתלויה בזמן. חוקי ההסתברות. מאורעות ותוצאות זרים. הסתברות מותנית. כלל בייס. הסתברות גאומטרית. פרדוקס של ברטרנד. .3 משתנים מקריים. מ?מ בדידים. הסתברות של מ?מ. פונקציות של מ?מ. ממוצע (תוחלת), שונות, מומנטים. ספין ½ ופרמגנטיות. התפגלות בינומית. מספרים גדולים. המצב המסתבר ביותר. מאורעות נדירים. דעיכה רדיואקטיבית. התפגלות פואסון. אנטרופית המידע. עקרון אנטרופיה מירבית ללא אילוצים. התפלגות אחידה. עקרון אנטרופיה מירבית עם אלוצי אנרגיה. התפלגות בולצמן. .4 גז חלקיקים במרחב המהירויות. מ?א רציף. צפיפות ההסתברות. ממוצע (תוחלת), שונות, מומנטים. פונקציית דלתא. התפלגות מקסוול (נורמלית, גאוסית). מומנט מגנטי מאותר בשדה מגטי. פרמגנטיות קלאסית. פלקטואציות של מגנוט. התפלגויות נצפות אחרות: חורים שחורים. רוחב הקו: התפלגות ברייט-וויגנר. אנטרופיה. התפלגות אחידה. התפלגות של גודל החלקיק בארסס, התפלגות של מסות ביקום: התפלגות לוג-נורמלית. התנגשויות במאיץ: מהתפגלות בינומית להתפלגות פואסון. .5 התפלגויות רב-משתנים רציפות. התפלגות משותפת ושולית. גז בשלושה ממדים. הרכיב המסתבר ביותר והגודל המסתבר ביותר של מהירות. הסתברויות איזוטרופיות ולא-איזוטרופיות. טנזור הלחצים בפלזמה. שונות משותפת וקורלציה. החלפת משתנים בהתפלגויות משותפות. אלומות בפלזמה. קרינה קוסמית: ספקטרום האנרגיות והתפלגות זוויתית. קווריאנס כנגד אי-תלות. .6חוקי מספרים גדולים. התפלגות גאוסית כגבול של התפלגויות בינומית ופואסון. אי-שוויון צ?בישב. מ?מ בלתי תלויים. סכום של מ?מ בלתי תלויים. קונבולוציה (קיפול). קיפול של התפלגויות גאוסיות. משפט הגבול המרכזי. יישומים ומגבלות של המשפט: רכיב המהירות של מולקולות הגז, פיזור קולון, איבוד האנרגיה של חלקיק העובר ששכתב הגז (התפלגות לנדאו( .7סטטיסטיקה בפיזיקה: מנתונים להשערה. סדר הפעולות: הנחה תאורטית, בניית ניסוי, מדידת פרמטרים מתאימים, הערכת אי-וודאויות, כימות הסכמה עם התאוריה, קבלת התאוריה או דחייתה. דוגמאות: חיפוש של בוזון היגס, חומר אפל ביקום, שבירת אינווריאנטיות CP. .8מדידות ושגיאות. התפשטות השגיאות. התפלגות נמדדת מול התפלגות אמיתית: קיפול עם פונקציית הפרדה (מכשיר מדידה). הנחה על התפגלות נורמלית של שגיאות במדידות. עיוות של התפלגות נמדדת: רוחב הקו. .9מדידות, מדגם, אוכלוסיה, סטטיסטיקה המדגם. ממוצע ושנונת של מדגם. משפט הגבול המרכזי בסטטיסטיקה. שערוך פרמטרים: גישת תדירויות וגישה בייסית. הסקה בייסיאנית. הסתברות פריורית ופוסטריורית. פונקציית הנראות. נראות מקסימלית. דוגמאות: מרחק מהשמש ומרכז הגלקסיה, התפלגות המסות מניסוי LIGO .10ניסויים במאיץ: יישומי חי בריבוע. דרגות חופש. פרמטרים לא ידועים (מטרד). תפקיד אי-ודאויות (הערכת יתר מול המעטה). שיערוך ללא הטיה (נטאי). פונקציית קורלציה. .11 בדיקת השערות. השערות פשוטות ומורכבות. מבחנים סטטיסטיים. נוימן-פירסון, נראות מוכללת, סטודנט, פישר. מבחן ההלימות. .12 (אם נשאר זמן) מהלך אקראי. תהליכי דיפוזיה. 13?.? ?(?אם נשאר זמן) שיטות מונטה-קרלו.??????

קומבינטוריקה בסיסית מרחב מדגם ומאורעות. פונצקייה הסתברות. הסתברות מותנית. הסתברות שלמה. משפט בייז. תלות ואי תלות התפלגויות שימושיות בדידות: אחיד, בינומי, גיאומטרי, פואסוני, היפר גאומטרי, בינומי שלישי. תוחלת, שונות, פונצקיית אחוזון וחציון. פונצקיה של מתשנה מקרי. התפלגות דו מימדית: התפלגות משותפת, התפלגות שולית, שונות משותפת, מקדם מתאם, התנייה על השוליים. חסמים: מרקוב, צ‘בישג, Jenssen. התפלגות נורמילת סדרת משתנית מקריים: חוקי המספרים הגדולים. משפט הגבול המרכזי. קורס מקביל - 201.1.9711

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.