22–2021–א

פרופ' ויקטור ויניקוב

נושאי לימוד

  1. מרחבים נורמיים ומרחבי מכפלה פנימית, הקירוב הטוב ביותר והטלות אורתוגונליות, מערכות אורתונורמליות. התכנסות במרחבים נורמיים. מערכות אורתונורמליות אינסופיות, שוויון פרסבל ומערכות אורתונורמליות שלמות.

  2. פולינומים אורתוגונליים. משפט הקירוב של ויירשטראס. שלמות של פולינומים אורתוגונליים בקטע סופי.

  3. טורי פורייה. שלמות, התכנסות נקודתית ותנאים להתכנסות במידה שווה.

  4. טרנספורם פורייה. משפט פלנשרל. נוסחת ההיפוך של פורייה. קונבולוציות. פולינומי הרמיט.

  5. משוואות שטורם-ליוביל בקטע סופי. אורתוגונליות של פונקציות עצמיות. קיום ושלמות של מערכת פונקציות עצמיות עבור בעיית שטורם-ליוביל רגולארית (עם הוכחה חלקית).

ביבליוגרפיה:
  1. Hartman, Philip. Ordinary differential equations. Corrected reprint of the second (1982) edition. With a foreword by Peter Bates. Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

  2. Jackson, Dunham. Fourier series and orthogonal polynomials. Reprint of the 1941 original. Dover Publications, Inc., Mineola, NY, 2004.

  3. K?rner, T. W. Fourier analysis. Second edition. Cambridge University Press, Cambridge, 1989.

רשימת הקורסים האוניברסיטאית: 201.1.2021

פניות סטודנטים

נציג ועד
איתי דרור
נציג אגודה
רכזת סיוע אקדמי - מדעי הטבע - אביטל פיימן
סגל חיצוני