25–2024–א

  1. מבוא. קבוצות, תת-קבוצות, תמורות, פונקציות, חלוקות. איברים בלתי-ניכרים (זהים), מולטי-קבוצות, אלגברה בינרית של תת-קבוצות. כללי סכום וכפל, קונוולוציות, ספירת זוגות. מקדמים בינומיאליים ומולטינומיאליים.

מטרת הסדנה ללוות את תלמידי מתמטיקה בשנה א ולשפר את המיומנויות שלהם בכל הנוגע לכתיבת הוכחות פורמאליות. במסגרת הסדנה, התלמידים יעבדו בקבוצות קטנות על כתיבת הוכחות, עם דגש על נושאים שמתקשרים לקורסי היסוד של שנה א.

אקסיומות של המספרים הממשיים, סדרות: מושג הגבול, סדרות מונוטוניות משפט בולצנו ויירשטראס, תנאי קושי, המספר e. גבולות של פונקציות. פונקציות רציפות: הגדרות שקולות של רציפות, תכונות הפונקציות האלמנטריות,

  • חוגים. חוג הפולינומים ואידאלים שלו. פריקות יחידה בחוג הפולינומים. אינטרפולציה של לגרנג‘.
  • ערכים עצמיים ווקטורים עצמיים של אופרטור לינארי.
  • פולינום אופייני ומשפט קיילי-המילטון. משפט הפרוק הפרימרי.
  • מספרים מרוכבים. שדות: הגדרה ותכונות, דוגמאות.
  • מערכות משוואות לינארית. שיטת הדירוג של גאוס
  • מטריצות ופעולותיהן. מטריצות הפיכות
  • דטרמיננטה: הגדרה ותכונות. מטריצה מצורפת. כלל קרמר
  • מרחבים וקטורים ותת
  • חבורה כסמטריה. דוגמאות: חבורות ציקליות, דיהדרלית, סמטריות. חבורות מטריצות.
  • הומומורפיזם. תת חבורות ותת חבורות נורמליות. חבורות מנה. משפט לגרנז‘. משפטי האיזומורפיזם. מכפלה ישרה של חבורות.
  • פעולה של

סיגמא-אלגבראות, משפט הרחבת המידה ומידת לבג על הישר, מרחבי מידה כלליים, פונקציות מדידות, תורת האינטגרציה, משפטי התכנסות (משפט אגורוב, התכנסות במידה, כמעט תמיד ובנורמות Lp), משפט לוזין, מרחבי Lp,

מבוא למושגים הבסיסיים של תורת ההסתברות:

מרחבי הסתברות גבולות של מאורעות ורציפות של הסתברות הסתברות מותנה אי-תלות של מאורעות סיגמה-אלגבראות, מרחבים רציפים, ומידת לבג משתנים מקריים והתפלגויות אי-תלות

  • חלוקה ופריקות יחידה ב-Z.
  • מספרים ראשוניים.
  • קונגרואציה.
  • שאריות רבועיות.
  • שרשים פרמיטיביים.
  • שברים משולבים.
  • מספרים אלגבריים וקרובים דיאופנטיים
  • יסודות תורת המספרים האלגברית
  1. חוגים ואידאלים.
  2. מודולים. סדרות מדוייקות. מכפלה טנזורית של מודולים.
  3. חוגים נטרים ומודולים מעליהם
  4. משפט הבסיס של הילברט.
  5. מודולים נוצרים סופית מעל תחום אידאילים ראשיים.
  6. משפט האפסים של הילברט.
  7. יריעות אפיניות.
  8. אידיאלים ראשונים ולוקליזציה. פרוק פרימרי.
  9. חוגי הערכה בדידה.
  1. טרנספורם פורייה: קונבולוציות, נוסחת ההיפוך, משפט פלנשרל, פונקציות הרמיט, דיסטריבוציות. נוסחת הסכום של פואסון. טרנספורם
  2. פורייה רב-מימדי. טרנספורם לפלס. קשר לקונבולוציות וטרנספורם פורייה. פולינומי לגר.

מרחבים מטריים ונורמיים. שקילות הנורמות במרחבים סוף מימדיים. קומפקטיות ומשפט היינה-בורל. התכנסות של סדרות וטורים של פונקציות נקודתית, במידה שווה ובנורמות אחרות. גזירה ואינטגרציה איבר-איבר של טורי

קבוצות פתוחות, סגורות, קומפקטיות במרחב האוקלידי. נורמות מטרציאליות ושקילות הנורמות. גבולות ורציפות בכמה משתנים. מסילות וקשירות מסילתית. נזגרות חלקיות וכווניות, הגרדיינט ומושג הדיפרנציאביליות. משפטי

מטרת הקורס לחשוף את התלמידים לאירועי מפתח בתולדות המתמטיקה לאורך ההיסטוריה מנקודת המבט של המתמטיקה המודרנית ובמידת האפשר לקשר אירועים אלו לתכנים הנלמדים במסגרת התואר במתמטיקה. הלימוד יכלול הכרת

  • יריעות טופולוגיות. חבורה יסודית ומרחבי כיסוי. שימושים.
  • הומולוגיה סינגולרית ושימושים.
  • יריעות גזירות. תבניות דיפרנציאליות ומשפט Stokes. הגדרת קוהומולגית de Rham
  • נושאים נוספים אם ישאר זמן
  1. מבנים אלגבריים יסודיים: חוגים, מודולים, אלגבראות, המרכז, אימפוטנטים, חוגי חבורה.

  2. חוגים עם חילוק: הקוטרניונים של המילטון, אלגבראות קוטרניונים מוכללות, אלגבראות חילוק מעל Fq, $\mathbb{C}

מרחבי בנך ומרחבי הילברט. תכונות בסיסיות של מרחבי הילברט. מרחבים וקטורים טופולוגיים. משפט בנך-שטיינהאוס (עקרון החסימות במידה שווה), משפט ההעתקה הפתוחה ומשפט הגרף הסגור. משפט האן-בנך. דואליות. מידות על

מטרת הקורס: להקנות ידע בסיסי בטופולוגיה דיפרנציאלית, ולהכיר תוצאות מרשימות של מאה 20 בתחום זה. טופולוגיה דיפרנציאלית חוקרת את תכונות טופולוגיות וחלקות של יריעות. התחום גדל משאלות רבות של סוף של מאה

מערכת אקסיומות לתחשיב הפרדיקטים. משפט השלמות ומשפט הקומפקטיות. מבוא לתורת המודלים: משפטי סקולם-לוונהים ותתי מבנים אלמנטריים. כריעות ואי-כריעות של תורות. משפט אי השלמות הראשון של גדל.

סילבוס:
  1. קבוצות: שייכות, איחוד, חיתוך, הפרש.

  2. מכפלה קרטזית, מושג היחס, יחסי שקילות, יחס סדר חלקי, יחס סדר קווי. הגדרת פונקציה כקבוצת סדורים.

  3. תחשיב הפסוקים: ו/או גרירה, שקילות וטבלאות האמת שלהם,

מספרים ממשיים (ללא חתכי דדקינד). סופרמום כאקסיומה. סדרות מתכנסות, תתי סדרות, סדרה מונוטונית וחסומה, גבולות עליונים ותחתונים. טורים: סכומים חלקיים, מתכנסים ומתבדרים, דוגמאות, טורים אי שלילייים, מבחני

1) מרחב הסתברות 2) נוסחת ההסתברות השלימה 3) הסתברות מותנה, אי תלות מאורעות 4) נוסחת בייס 5) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, ברנולי, בינומי, גיאומטרי, פואסון 6) משתנה מקרי רציף. התפלגויות

שדות ומטריצות, מרחבים וקטוריים מעל שדה, משוואות ליניאריות מעל שדה, דטרמיננטות, מרחבים דואליים, טרנספורמציות ליניאריות.

  • חוגים. חוג הפולינומים ואידאלים שלו. פריקות יחידה בחוג הפולינומים. אינטרפולציה של לגרנג‘.
  • ערכים עצמיים ווקטורים עצמיים של אופרטור לינארי. פולינום אופייני ומשפט קיילי–המילטון. משפט הפרוק הפרימרי.

1) מרחב ההסתברות2) הסתברות מותנית, אי-תלות מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.3) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, בינומית, גיאומטרית, היפרגאומטרית, בינומית שלילית, פואסון.4) משתנה

  1. מושג הגבול, גבול של פונקציה.2. רציפות, רציפות חד-צדדית. 3. הנגזרת וכללי הגזירה היסודיים, נגזרות הפונקציות הטריגונומטריות. 4. גזירת פונקציות הפוכות ופונקציות סתומות. 5. מקסימום ומינימום. הערך הגדול
  1. וקטורים במישור ובמרחב. מכפלה סקלרית ומכפלה ווקטורית. ישרים, מישורים ושטחים במרחב.
  2. פונקציות ווקטורית. מהירות, תאוצה, וקטור משיק, אורך עקומה, עקמומיות.
  3. פונקציות של מספר משתנים. נגזרות חלקיות,
  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה

פונקציות אלמנטריות בסיסיות. פונקציות חד-חד ערכיות, הפוכות, מונוטוניות, זוגיות ואי זוגיות. פונקציה מורכבת. גבול של פונקציה. המספר e. גבולות חד-צדדיים. רציפות של פונקציה. תכונות של פונקציה רציפה. 2.

  1. משוואות דיפרנציאליות רגילות: פתרונות מפורשים למשוואות דיפרנציאליות מסדר ראשון. משוואות דיפרנציאליות מסדר שני. משוואות דיפרנציאליות מסדר גבוה, מערכות של משוואות דיפרנציאליות רגילות.
  2. טורי פורייה: חזרה
  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים.
  2. מערכת משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס.
  3. מרחבים וקטוריים: דוגמאות (מרחב אוקלידי דו- ממדי ותלת- ממדי, מרחבי פונקציות, מרחבי מטריצות),
  1. מערכת המספרים הממשיים, אי שיויונים במספרים ממשיים, מערכת המספרים המרוכבים, ההצגות הקרטזית, הפולרית והמעריכית, משפט ד‘מואבר, חישוב שורשים.
  2. מערכות משוואות לינאריות מעל המספרים הממשיים או המרוכבים,

מושגי יסוד, שדות כוונים. משוואות דיפרנציאליות מסדר ראשון, משוואות ספרביליות ומדויקות, גורם אינטגרציה. שיטות ישירות לפתרון משוואות דיפרנציאליות מסדר ראשון, משוואות ברנולי. קירובי אוילר. דוגמאות, גידול

גבולות ורציפות של פונקציות, יישומים פונקציות גזירות, יישומים כללי גזירה, גזירה של פונקציות סתומות, יישומים חקירת פונקציות, פונקציות מרובות משתנים, נגזרות חלקיות, יישומים האינטגרל המסוים, האינטגרל הלא

  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים. מערכות משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס. 2. מרחבים וקטוריים: דוגמאות, מושגים בסיסיים, בסיס ומימד של מרחב וקטורי. ישום מרחבים

. מד‘’ח לינאריות מסדר 2: מיון, צורה קנונית.2. טורי פוריה (הגדרה, משפט פוריה, המשכיות זוגית ואי-זוגית, נגזרת, התכנסות במידה שווה).3. דוגמאות: משוואת החום (בעיות דיריכלה וניומן), משוואת הגלים (mixed

  1. ישרים ומישורים. המכפלה הווקטורית. פונקציות וקטוריות ממשיות, מסילות במישור, משיקים, תנועה על מסילה 2. פונקציות של כמה משתנים: קבוצות פתוחות וסגורות, גבולות, רציפות, גזירות, הנגזרת הכוונית, נגזרות

תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. עקרון החיבור ועקרון הכפל . חליפות, תמורות וצירופים . בינום של ניוטון. עקרון האינדוקציה. עקרון ההכלה וההפרדה. עקרון שובץ

  1. המספרים הממשיים. סופרימום ואינפימום של קבוצה. 2. סדרות מתכנסות. תת-סדרות. סדרות קושי. משפט בולצנו-ויירשטראס. גבולות עליונים ותחתונים. 3. טורים. סכומים חלקיים. טורים מתכנסים ומתבדרים. תנאי קושי.
  1. פונקציות. תחום הגדרה וטווח. גרף. מונוטוניות, זוגיות, מחזוריות. הרכבת פונקציות. פונקציה הפוכה.
  2. סדרות. גבולות של סדרות.
  3. גבול של פונקציה בנקודה. רציפות.
  4. נגזרת. משמעות גאומטרית ופיסיקלית. כללי שרשרת.

. מרחב הסתברות: מרחב מדגם, פונקציה הסתברות, מרחב הסתברות סימטרי סופי, קומבינטוריקה. הסתברות גיאומטרית. הסתברות מותנית, אי-תלות של מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.2. משתנה מקרי בדיד,

  1. חשבון אינטגרלי ושימושיו: האינטגרל המסוים וסכומי רימן, אינטגרביליות של פונקציות חסומות בעלות מספר בן מנייה של נקודות אי-רציפות (ההוכחה רק עבור פונקציות רציפות ופונקציות מונוטוניות), פונקציות קדומות
  1. פעולות על קבוצות, סימון לוגי, יחסים.

  2. מניה בסדר של אובייקטים קומבינטוריים: מספרים שלמים, פונקציות, עיקרונות ראשונים של פירוט.

  3. קומבינטוריקה אלמנטרית: קבוצות, רב-קבוצות וסידוריהן; מקדמים

  1. משוואות ליניאריות מסדר ראשון עם מקדמים קבועים. אופנים, התפשטות של אי-רציפות בפתרון, אינטגרלים ראשונים.
  2. משוואת גלים חד ממדית. תנודות של מיתר אלאסטי, התפשטות גלים, פתרון דלמבר ( d‘Alembert )לבעיית

משוואות דיפרנציאליות רגילות מושגי יסוד: משוואות מסדר ראשון, פתרון כללי, בעיות תנאי התחלה, פתרון פרטי. משוואות לינאריות, עם משתנים נפרדים, מדויקות, הומוגניות. גורם אינטגרציה. משפט הקיום ויחידות (ללא

אלגברה של וקטורים. הנדסה אנליטית במרחב. משטחים. פונקציה וקטורית של משתנה סקלרי (גבול, רציפות, נגזרת, משיק לגרף). מהירות ותאוצה.פונקציה במספר משתנים. נגזרות חלקיות. המישור המשיק לגרף הפונקציה. גרדיאנט

. מושגי יסוד: משוואות מסדר ראשון, פתרון כללי, בעיות תנאי התחלה, פתרון פרטי. משוואות לינאריות, עם משתנים נפרדים, מדויקות, הומוגניות. גורם אינטגרציה. משפט הקיום ויחידות (ללא הוכחה). משוואת ריקטי,

. יסודות של אלגברה וקטורית ושל גיאומטריה אנליטית.2. פונקציות רבות משתנים. תחום הגדרה. קווי רמה. משטחי רמה. גרפים של פונקציות של שני משתנים. 3. נגזרות חלקיות מסדר ראשון. תיאור גיאומטרי. טכניקת חישוב

  1. אינטגרל רימן: סכומי רימן, המשפט היסודי של החשבון הדיפרנציאלי והאינגרל הלא-מסוים. שיטות לחישוב אינטגרלים (אינטגרציה בחלקים, חילוף משתנה, שברים חלקיים). אינטרגלים לא אמיתיים ושימוש לטורים. 2. התכנסות
  1. סטטיסטיקה תיאורית: ארגון, עיבוד והצגת נתונים. 2. התפלגויות דגימה: התפלגות נורמלית, התפלגות t (הסטודנט), התפלגות חי בריבוע והתפלגות פישר. 3. אמידה, אומד נקודתי ורווח סמך של פרמטרים של האוכלוסייה:
  1. טורים מספריים חיוביים וכלליים. התכנסות בהחלט ובתנאי. מבחני שורש והמנה. מבחן ליבניץ

  2. טורי חזקות.

  3. משוואות דיפרנציאליות מסדר ראשון: משוואות ניתנות להפרדת משתנים, משוואות מדויקות, משוואות לינאריות

  1. מרחבים נורמיים ומרחבי מכפלה פנימית, הקירוב הטוב ביותר והטלות אורתוגונליות, מערכות אורתונורמליות. התכנסות במרחבים נורמיים. מערכות אורתונורמליות אינסופיות, שוויון פרסבל ומערכות אורתונורמליות שלמות.

  1. שדות: הגדרת שדה, מספרים מרוכבים.

  2. משוואות לינאריות: פעולות אלמנטריות, דירוג, מערכות הומוגניות ולא הומוגניות, הצגת פתרונות.

  3. מרחבים ווקטוריים: דוגמאות, תת-מרחבים,תלות ליניארית, בסיסים, מימד.

  1. פונקציות בעלות ערכים מרוכבים, האקספוננט המרוכב. טורי פורייה של פונקציות מחזוריות ורציפות למקוטעין. פעולות בסיסיות והשפעתן על מקדמי פורייה: הסטה, מודולוציה, קונבולוציה, נגזרת.
  2. התכנסות במידה שווה:

.1 ספירת המצבים. קומבינטוריקה. חלקיקים ניתנים ולא ניתנים להבדלה. מערכים מסודרים ולא מסודרים. תמורות עם החזרה ובלי החזרה. צירופים עם ובלי החזרה. מערכת ספינים של 1/2. גז תאי. פרמיונים, פארה-פרמינונים,

קומבינטוריקה בסיסית מרחב מדגם ומאורעות. פונצקייה הסתברות. הסתברות מותנית. הסתברות שלמה. משפט בייז. תלות ואי תלות התפלגויות שימושיות בדידות: אחיד, בינומי, גיאומטרי, פואסוני, היפר גאומטרי, בינומי שלישי.

25–2024–ב

  1. יחסי סדר חלקיים. שרשראות ואנטי שרשראות. דוגמאות. משפט ארדש סקרס או משפט אחר להדגמה. בניית סדר חלקי על מנה מעל קדם סדר.
  2. השוואת קבוצות. הגדרת עצמה כמחלקת שקילות. משפט קנטור ברנשטיין. משפט קנטור על

הנגזרת כפונקציה: פונקציות גזירות ברציפות, משפט דרבו. פונקציות קמורות: הגדרה, גזירות חד-צדדית, הקשר לנגזרת השניה. משפט הערך הממוצע המוכלל של קושי ושימושיו: כלל לופיטל, פולינומי טיילור ושארית לגרנז‘.

  • חוגים. חוג הפולינומים ואידאלים שלו. פריקות יחידה בחוג הפולינומים. אינטרפולציה של לגרנג‘.
  • ערכים עצמיים ווקטורים עצמיים של אופרטור לינארי.
  • פולינום אופייני ומשפט קיילי-המילטון. משפט הפרוק הפרימרי.

משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות

מרחבים טופולוגיים ופונקציות רציפות (מרחבי מכפלה, מרחבי מנה ומרחבים מטריים). קשירות וקומפקטיות. תנאי מניה והפרדה (הלמה של אוריסון, משפט המטריזציה של אוריסון, חלוקת קטע היחידה). משפט טיכונוף וקומפקטיפיקציית סטון-צ‘ך. משפטי מטריזציה ופרה-קומפקטיות.

  • מספרים מרוכבים. פונצקיות אנליטיות, משוואות קושי-רימן.
  • העתקות קונפורמיות, טרנספורמציות מוביוס.
  • אינטגרציה. משפט קושי. נוסחת קושי. אפסים, קטבים, פיתוח טיילור, פיתוח לורן. חשבון השאריות.
  • משפט ויירשטרס
  • שדות: עובדות בסיסיות ודוגמאות, אפיון (קרקטריסטיקה), שדות ראשוניים
  • פולינומים: פריקות, מבחן איזנשטיין, למת גאוס
  • הרחבות של שדות: תכונת המגדל, הרחבות אלגבריות וטרנסצנדנטיות, צרוף אבר לשדה
  • בניות בסרגל

יריעות דיפרנציאביליות משוכנות במרחב האוקלידי עם שפה. המרחב המשיק, הנורמל, שדות וקטורים. יריעות אוריינטביליות, אוריינטציית הנורמל החיצוני. פירוקי יחידה חלקים. תבניות דיפרנציאליות על יריעות משוכנות.

משוואות דיפרנציאליות רגילות מסדר ראשון, משפטי קיום ויחידות, משוואות ליניאריות מסדר N, ורונסקיאן, שדות וקטוריים, משוואות אוטונומיות, מערכות משוואות ליניאריות מסדר ראשון, מערכות משוואות לא-ליניאריות ויציבות.

  1. נושאי הכנה: ייצוג מספרים במחשב, שגיאות עיגול ויציבות. נורמות מטריצליאליות ומספר המצב של מטריצה.
  2. מבוא לפתרון נומרי של משוואות דיפרנציאליות רגילות: בעיות תנאי התחלה, שיטת אוילר, מבוא לשיטות multistep,

מטרת הקורס להקנות לסטודנטים יכולות התמודדות עם בעיות מתמטיות במגוון נושאים על ידי הכרות עם אסטרטגיות נפוצות לפתרון בעיות מתמטיות. הקורס דורש השתתפות פעילה של הסטודנטים במהלך השיעור וכולל עבודה

למידה עמוקה, או בשמה העממי: אינטליגנציה מלאכותית, זוכה להצלחה מסחררת בשנים האחרונות. בבסיסה שלה השיטה נמצאים כלים מתמטיים בתחומי האלגברה הלינארית, האופטימיזציה, וההסתברות והסטטיסטיקה מטרת הקורס היא

בשנות ה-80 העלה א. גרותנדיק תכנית לפיתוח ”טופולוגיה שקולה“ שלא תסבול מהשפע העצום של דוגמאות נגדיות ופתולוגיות המוכרות מהטופולוגיה הקלאסית. כיום רבים רואים בסדר-מזעריות את הגשמת תכניותו של גרותנדיק:

  • תזכורת רלוונטית מגיאומטריה אלגברית
  • הגדרה, דוגמאות ותכונות בסיסיות של חבורות אלגבריות
  • גזירות, דיפרנציאלים ואלגבראות לי
  • תתי-חבורות פרבוליות, תתי-חבורות בורל וחבורות פתירות
  • חבורת וויל ושורשים
  • מבנה חבורות רדוקטיביות
  • נושאים מתקדמים

דינמיקה סימבולית הוא תחום מתמטי העוסק בסדרות של ספרות/ אותיות /ביטים שהם למעשה סימנים מופשטים, המכונים ”סימבולים‘“, מנקודת המבט של מערכות דינמיות. עיקרון מנחה בסיסי הוא שבמקרים רבים ניתן לקודד ולהבין

סילבוס:
  1. קבוצות: שייכות, איחוד, חיתוך, הפרש.

  2. מכפלה קרטזית, מושג היחס, יחסי שקילות, יחס סדר חלקי, יחס סדר קווי. הגדרת פונקציה כקבוצת סדורים.

  3. תחשיב הפסוקים: ו/או גרירה, שקילות וטבלאות האמת שלהם,

מספרים ממשיים (ללא חתכי דדקינד). סופרמום כאקסיומה. סדרות מתכנסות, תתי סדרות, סדרה מונוטונית וחסומה, גבולות עליונים ותחתונים. טורים: סכומים חלקיים, מתכנסים ומתבדרים, דוגמאות, טורים אי שלילייים, מבחני

1) מרחב הסתברות 2) נוסחת ההסתברות השלימה 3) הסתברות מותנה, אי תלות מאורעות 4) נוסחת בייס 5) משתנה מקרי בדיד. התפלגויות בדידות: אחידה, ברנולי, בינומי, גיאומטרי, פואסון 6) משתנה מקרי רציף. התפלגויות

שדות ומטריצות, מרחבים וקטוריים מעל שדה, משוואות ליניאריות מעל שדה, דטרמיננטות, מרחבים דואליים, טרנספורמציות ליניאריות.

  • חוגים. חוג הפולינומים ואידאלים שלו. פריקות יחידה בחוג הפולינומים. אינטרפולציה של לגרנג‘.
  • ערכים עצמיים ווקטורים עצמיים של אופרטור לינארי. פולינום אופייני ומשפט קיילי–המילטון. משפט הפרוק הפרימרי.
  1. מושג הגבול, גבול של פונקציה.2. רציפות, רציפות חד-צדדית. 3. הנגזרת וכללי הגזירה היסודיים, נגזרות הפונקציות הטריגונומטריות. 4. גזירת פונקציות הפוכות ופונקציות סתומות. 5. מקסימום ומינימום. הערך הגדול
  1. וקטורים במישור ובמרחב. מכפלה סקלרית ומכפלה ווקטורית. ישרים, מישורים ושטחים במרחב.
  2. פונקציות ווקטורית. מהירות, תאוצה, וקטור משיק, אורך עקומה, עקמומיות.
  3. פונקציות של מספר משתנים. נגזרות חלקיות,

פונקציות אלמנטריות בסיסיות. פונקציות חד-חד ערכיות, הפוכות, מונוטוניות, זוגיות ואי זוגיות. פונקציה מורכבת. גבול של פונקציה. המספר e. גבולות חד-צדדיים. רציפות של פונקציה. תכונות של פונקציה רציפה. 2.

  1. מבוא: שדות המספרים הממשיים והמרוכבים, פולינומים.
  2. מערכת משואות ליניאריות ופתרונן בשיטת האלימינציה של גאוס.
  3. מרחבים וקטוריים: דוגמאות (מרחב אוקלידי דו- ממדי ותלת- ממדי, מרחבי פונקציות, מרחבי מטריצות),
  1. מערכת המספרים הממשיים, אי שיויונים במספרים ממשיים, מערכת המספרים המרוכבים, ההצגות הקרטזית, הפולרית והמעריכית, משפט ד‘מואבר, חישוב שורשים.
  2. מערכות משוואות לינאריות מעל המספרים הממשיים או המרוכבים,
  1. ישרים ומישורים. המכפלה הווקטורית. פונקציות וקטוריות ממשיות, מסילות במישור, משיקים, תנועה על מסילה 2. פונקציות של כמה משתנים: קבוצות פתוחות וסגורות, גבולות, רציפות, גזירות, הנגזרת הכוונית, נגזרות

תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. עקרון החיבור ועקרון הכפל . חליפות, תמורות וצירופים . בינום של ניוטון. עקרון האינדוקציה. עקרון ההכלה וההפרדה. עקרון שובץ

  1. המספרים הממשיים. סופרימום ואינפימום של קבוצה. 2. סדרות מתכנסות. תת-סדרות. סדרות קושי. משפט בולצנו-ויירשטראס. גבולות עליונים ותחתונים. 3. טורים. סכומים חלקיים. טורים מתכנסים ומתבדרים. תנאי קושי.
  1. פונקציות. תחום הגדרה וטווח. גרף. מונוטוניות, זוגיות, מחזוריות. הרכבת פונקציות. פונקציה הפוכה.
  2. סדרות. גבולות של סדרות.
  3. גבול של פונקציה בנקודה. רציפות.
  4. נגזרת. משמעות גאומטרית ופיסיקלית. כללי שרשרת.

. מרחב הסתברות: מרחב מדגם, פונקציה הסתברות, מרחב הסתברות סימטרי סופי, קומבינטוריקה. הסתברות גיאומטרית. הסתברות מותנית, אי-תלות של מאורעות, נוסחת ההסתברות השלמה, נוסחת בייס.2. משתנה מקרי בדיד,

. מספרים מרוכבים: המישור המרוכב, הצגה קוטבית, משוואה של קו. תחום פשוט-קשר ורב-קשר. תכונות בסיסיות של פונקציות אנליטיות, משואות קושי-רומן. פונקציות בסיסיות. העתקות קונפורמיות. פונקציות מביוס. פונקציות

  1. משוואות לינאריות מסדר שני בשני משתנים: מיון במקרה של מקדמים קבועים ומשתנים, קווים אופייניים, צורות קאנוניות.
  2. תורת שטורם-ליוביל.
  3. משוואת הגלים. תנאי התחלה ותנאי שפה (קצוות קבועים וחופשיים). שיטת
  1. חשבון אינטגרלי ושימושיו: האינטגרל המסוים וסכומי רימן, אינטגרביליות של פונקציות חסומות בעלות מספר בן מנייה של נקודות אי-רציפות (ההוכחה רק עבור פונקציות רציפות ופונקציות מונוטוניות), פונקציות קדומות
  1. משוואות ליניאריות מסדר ראשון עם מקדמים קבועים. אופנים, התפשטות של אי-רציפות בפתרון, אינטגרלים ראשונים.
  2. משוואת גלים חד ממדית. תנודות של מיתר אלאסטי, התפשטות גלים, פתרון דלמבר ( d‘Alembert )לבעיית

אלגברה של וקטורים. הנדסה אנליטית במרחב. משטחים. פונקציה וקטורית של משתנה סקלרי (גבול, רציפות, נגזרת, משיק לגרף). מהירות ותאוצה.פונקציה במספר משתנים. נגזרות חלקיות. המישור המשיק לגרף הפונקציה. גרדיאנט

. מושגי יסוד: משוואות מסדר ראשון, פתרון כללי, בעיות תנאי התחלה, פתרון פרטי. משוואות לינאריות, עם משתנים נפרדים, מדויקות, הומוגניות. גורם אינטגרציה. משפט הקיום ויחידות (ללא הוכחה). משוואת ריקטי,

. יסודות של אלגברה וקטורית ושל גיאומטריה אנליטית.2. פונקציות רבות משתנים. תחום הגדרה. קווי רמה. משטחי רמה. גרפים של פונקציות של שני משתנים. 3. נגזרות חלקיות מסדר ראשון. תיאור גיאומטרי. טכניקת חישוב

  1. אינטגרל רימן: סכומי רימן, המשפט היסודי של החשבון הדיפרנציאלי והאינגרל הלא-מסוים. שיטות לחישוב אינטגרלים (אינטגרציה בחלקים, חילוף משתנה, שברים חלקיים). אינטרגלים לא אמיתיים ושימוש לטורים. 2. התכנסות
  1. טורים מספריים חיוביים וכלליים. התכנסות בהחלט ובתנאי. טורי חזקות.
  2. אלגברה וקטורית. מכפלה סקלרית, מכפלה וקטורית ומכפלה משולבת.
  3. הנדסה אנליטית של ישר ומישור. ישר בהצגה פרמטרית. מישור בהצגה קנונית. מצבים
  1. מכפלה סקלרית )מכפלה פנימית(. מכפלה ווקטורג- 3Rתייאומטריה אנליטית. ווקטורים ב מכפלה מעורבת. משמעות גיאומטרית. משוואת הישר. משוואת המישור. משטחים ממעלה .שנייה. משוואה סטנדרטית של כדור. משוואות קנוניות
  1. סטטיסטיקה תיאורית: ארגון, עיבוד והצגת נתונים. 2. התפלגויות דגימה: התפלגות נורמלית, התפלגות t (הסטודנט), התפלגות חי בריבוע והתפלגות פישר. 3. אמידה, אומד נקודתי ורווח סמך של פרמטרים של האוכלוסייה:
  1. שדות: הגדרת שדה, מספרים מרוכבים.

  2. משוואות לינאריות: פעולות אלמנטריות, דירוג, מערכות הומוגניות ולא הומוגניות, הצגת פתרונות.

  3. מרחבים ווקטוריים: דוגמאות, תת-מרחבים,תלות ליניארית, בסיסים, מימד.

חלק א: לוגיקה ותורת הקבוצות: תחשיב הפסוקים, אופרטורים בוליאניים וטבלאות האמת שלהם, ערך האמת של פסוקים בהשמה (ללא הגדרה אינדוקטיבית עדיין), שקילות לוגית וגרירה לוגית, טאוטולוגיות ופסוקים שקריים,

  1. לכסון אופרטורים: ערכים ווקטורים עצמיים, פולינום אופייני, שימושים.

  2. מרחבים עם מכפלה פנימית ’ אי שוויון קושי שוורץ ואי-שוויון בסל, הקירוב הטוב ביותר, תהליך גרם-שמידט.

  3. אופרטורים על מרחבי מכפלה

מרחבים מטריים:

קבוצות פתוחות, קבוצות סגורות,סדרות קושי,שלמות,קומפקטיות,משפט היינה–בורל, רציפות, רציפות במידה שווה, התכנסות במידה שווה של סדרות פונקציות.

תורת המידה:

אלגבראות, מידות ומידות חיצוניות,

הערות

  • קורסים המסומנים ב-(*) מהווים דרישת קדם לרישום לתאר מוסמך
  • קורסים המסומנים ב-(#) הינם קורסי חובה אפשריים למוסמך, בתחומים המתאימים, כמתואר בתכנית הלימודים למוסמך. לפחות שניים כאלה, מתחומים שונים, נדרשים לעמידה בדרישות התואר.
  • קורסים לתארים מתקדמים פתוחים גם בפני תלמידי בוגר חזקים, להם ציון ממוצע של 85 ומעלה, ואשר ניתן להם אישור של המרצים בקורם ושל ראש ועדת ההוראה
  • אנא עיינו בתכניות הלימודים המלאות לתואר בוגר ולתארים מתקדמים למידע על הדרישות והאפשרויות המלאות.