22–2021–ב
ד"ר אינה אנטובה-איזנבוד
נושאי לימוד
סילבוס:
- מבוא: פעולה של חבורה על קבוצה ופעולה מושרה על מרחב וקטורי. אלגברה מולטי-לינארית (מכפלה טנזורית של מרחבים וקטורים).
- מושגי יסוד: הצגות, סכום ישר של הצגות, הצגות אי-פריקות והצגות פשוטות למחצה. הלמה של שור, הצגות אי פריקות של חבורה אבלית, פריקות לחלוטין, משפט משקה. דוגמאות: ההצגה הרגולרית של חבורה סופית והצגות הקשורות במרחבים הומוגניים.
- שקילות של הצגות. מורפיזם בין הצגות. קטגוריית ההצגות תיאור בעזרת מודולים מעל חוג החבורה. פעולות בהצגות (הצגה דואלית, טנזור פנימי וחיצוני, צמצום לתת חבורה).
- פירוק ההצגה הרגולרית של חבורה סופית. מספר ההצגות האי-פריקות. מקדמי הצגה, קרקטרים, אורתוגונליות.
- תורת ההצגות ואנליזה הרמונית: התמרת פורייה על חבורה סופית אבלית, נוסחת עקבה לחבורות. סופיות.
- שימושי תורת ההצגות: מספרים אלגבריים, אלגבריות של קרקטרים, משפט ההתחלקות של פרובניוס ומשפט ברנסייט על פתירות של חבורות. במידה והזמן יתיר: משפט הורוביץ על סכום ריבועים, שימושי תורת ההצגות בפיזיקה ובכימיה.
- בניה של הצגות: הצגה מושרה והדדיות פרובניוס, קרקטר של הצגה מושרה. נוסחת מאקיי. תורת מאקיי (שיטת תת החבורה הקטנה): הצגות של מכפלות חצי ישרות. הצגות של החבורה הדיהדרלית, הצגות של חבורת הייזנברג.
- פונקטור האינדוקציה כצמוד לצמצום. מימוש פונקטור האינדוקציה באמצעות מכפלה טנזורית. במידה והזמן יתיר: צמצום הצגות (שבירת סימטריה), זוגות גלפנד והצצה לתורת ההצגות היחסית.
- מיון, בנייה וקרקטרים עבור ההצגות של חבורות ספציפיות: חבורת הסימטריות של גופים אפלטונים, חבורות התמורות, החבורה $SL_2$ מעל שדה סופי.
- משפטי ארטין ובראור על הצגות מונומיאליות.