18–2017–ב
פרופ' גריגורי משביצקי
נושאי לימוד
חלק א‘: הבסיס של תורת הקבוצות1. מושג הקבוצה ופעולות האיחוד, החיתוך ההפרש וההשלמה על קבוצות. קבוצת החזקה. 2. משפט האינדוקציה של המספרים הטבעיים. אינדוקציה שלמה, עקרון האבר המינימאלי. שימושים. 3. זוגות סדורים והמכפלה הקרטזית. מושג היחס.4. הפונקציה. תחום וטווח. פונקציה חד-חד ערכית. פונקציה על. הרכבת פונקציות. המינימאלי. שימושים.חלק ב‘: תחשיב הפסוקים 1. הקשרים.2. השקילויות הבסיסיות.3. צורה דיסיונקטיבית נורמלית.4. שלמות מערכות של קשרים.חלק ג‘: תחשיב הפרדיקטים 1. שפת תחשיב הפרדיקטים. נוסחאות, שמות עצם ופסוקים.2. מבנים ודוגמאות למבנים.3. השמות וספוק נוסחאות במבנים.4. שקילות לוגית וגרירה לוגית.5. שקילות אלמנטרית וקבוצות גדירות.חלק ד‘: יסודות חשבון עוצמות 1. מושג העוצמה.2. קבוצות סופיות וקבוצות אינסופיות.3. קבוצות שעוצמתן שווה לעוצמת קבוצות המספרים הטבעיים.4. משפט קנטור על עוצמת קבוצת החזקה.5. עוצמת המספרים הממשיים ועוצמת (N) P.