18–2017–ב

פרופ' שחר סמורודינסקי

נושאי לימוד

  • משפטים בסיסיים והגדרות: קבוצות קמורות, למת ההפרדה, משפט הלי, משפט רדון, משפט קרתאודורי, נקודת מרכז, משפט טברברג, גרפים מישוריים, משפט קבה,
  • גרפים גאומטריים: למת החיתוכים. שימושים לבעיות ארדס: בעיות חילה בין נקודות ועקומים, בעיית המרחקים הזהים, בעיית ספירת מרחקים שונים, למת בחירה של נק בתוך עיגולים. נק בתוך סימפלקסים. ספירת חציות של קבוצת נקודות ע“י על-מישורים. שימוש בחילות לבעיות בתורת המספרים האדיטיבית.
  • בעיות צביעה וטרנסברסלים להיפר גרפים גאומטריים: מימד וי סי, רשתות אפסילון ורשתות אפסילון חלשות לקבוצות קמורות. צביעות חסרות קונפליקטים.
  • מערכים: סדרות דבנפורט שינצל ושימושיהן לתתי מבנים במערכים.
  • תורת רמזי גאומטרית: משפט ארדס סקרס לקבוצות קמורות. שימושים של משפט דילוורס, גרפים קווזי מישוריים.

דרישות והרכב ציון הקורס

  • משפטים בסיסיים והגדרות: קבוצות קמורות, צרוף קמור, למת ההפרדה, משפט הלי, משפט רדון, משפט קרתאודורי, נקודת מרכז, משפט טברברג, גרפים מישוריים, משפט קבה, הוכחת המפריד לגרפים מישוריים של ליפטון טרג`ן באמצעות קבה.
  • גרפים גאומטריים: למת החיתוכים. שימושים לבעיות ארדס: בעיות חילה בין נקודות ועקומים, בעיית המרחקים הזהים, בעיית ספירת מרחקים שונים, למת בחירה של נק בתוך עיגולים. נק בתוך סימפלקסים. ספירת חציות של קבוצת נקודות על-ידי על-מישורים. שימוש בחילות לבעיות בתורת המספרים האדיטיבית.
  • בעיות צביעה וטרנסברסלים להיפר גרפים גאומטריים: מימד וי סי, רשתות אפסילון ורשתות אפסילון חלשות לקבוצות קמורות. צביעות חסרות קונפליקטים.
  • מערכים: סדרות דבנפורט שינצל ושימושיהן לתתי מבנים במערכים.
  • תורת רמזי גאומטרית: משפט ארדס סקרס לקבוצות קמורות. שימושים של משפט דילוורס, גרפים קווזי מישוריים.

רשימת הקורסים האוניברסיטאית: 201.2.0191