17–2016–ב
פרופ' דמיטרי קרנר
נושאי לימוד
- סקירת מבוא ודוגמאות בסיסיות. נקודות קיצון מנוונות של פונקציות. נקודות סינגולריות של עקומות.
- פונקציות הולומורפיות ומשפט הכנה של ויירשטרס. חוג מקומי ונבט של קבוצה/פונקציה.
- נקודת קיצון של פונקציה. דפורמציה ומורסיפיקציה. נבטים ה“מוגדרים-סופית“.
- מיון של סינגולריות פשוטות. אינווריאנטים בסיסיים של נקודה סינגולרית. סינגולריות של עקום מישורי. פיצול לענפים ופיתוח של פיויזו.
- לפי הזמן שיישאר ורצון של הקבוצה נתמקד באחד הנושאים הבאים: א. התרת סינגולריות של עקום מישורי; ב. אינווריאנטים טופולוגיים של סינגולריות של עקום מישורי ופיברצית מילנור; ג. דפורמציה וורסאלית ודיסקרימיננט.
דרישות והרכב ציון הקורס
ראו באתר