21–2020–א
פרופ' שחר סמורודינסקי
תקציר
מבוא ללוגיקה ותורת הקבוצות: תחשיב הפסוקים, עקרון האינדוקציה הטבעית. תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. יחסים ופונקציות. תכונות של יחסים .יחס שקילות. מחלקת השקילות . קבוצת המנה. תכונות של פונקציות. פונקציות על ופונקציות חח”ע. הרכבת פונקציות. סדרי גודל של פונקציות (סימון O גדול f=O(g) וכו) קומבינטוריקה בסיסית. עקרון ההכלה וההפרדה. עקרון שובח היונים נוסחאות נסיגה ליניאריות הומוגניות. מבוא לתורת הגרפים: תכונות ומשפטים בסיסיים
נושאי לימוד
-
פעולות על קבוצות, סימון לוגי, יחסים.
-
מניה בסדר של אובייקטים קומבינטוריים: מספרים שלמים, פונקציות, עיקרונות ראשונים של פירוט.
-
קומבינטוריקה אלמנטרית: קבוצות, רב-קבוצות וסידוריהן; מקדמים בינומיאליים ומולטינומיאליים.
-
עקרון ההכלה ודחייה, פונקצית אוילר.
-
גרפים: הצגת גרפים ואיזומורפיזם.
-
רקורסיה ופונקציות יוצרות: הגדרות רקורסיביות, פונקציות יוצרות רגילות ואקספוננציאליות, רקורסיה לינארית עם מקדמים קבועים.
-
אריתמטיקה מודולרית: קונגרואנטיות של מספרים שלמים, $\mathbb{Z}_m$, האיברים ההפיכים ב-$\mathbb{Z}_m$.
-
מבנים אלגבריים: אקסיומות ודוגמאות של חבורות, חבורות ותתי חבורות ציקליות, מחלקות ומשפט לגרנז‘. חוגים ושדות סופיים.
דרישות והרכב ציון הקורס
10 אחוז עבודות בית ו 90 אחוז מבחן.