21–2020–א

פרופ' שחר סמורודינסקי

תקציר

מבוא ללוגיקה ותורת הקבוצות: תחשיב הפסוקים, עקרון האינדוקציה הטבעית. תורת הקבוצות. קבוצה, תת-קבוצות. קבוצת חזקה. מכפלה קרטזית של קבוצות. יחסים ופונקציות. תכונות של יחסים .יחס שקילות. מחלקת השקילות . קבוצת המנה. תכונות של פונקציות. פונקציות על ופונקציות חח”ע. הרכבת פונקציות. סדרי גודל של פונקציות (סימון O גדול f=O(g) וכו) קומבינטוריקה בסיסית. עקרון ההכלה וההפרדה. עקרון שובח היונים נוסחאות נסיגה ליניאריות הומוגניות. מבוא לתורת הגרפים: תכונות ומשפטים בסיסיים

נושאי לימוד

  1. פעולות על קבוצות, סימון לוגי, יחסים.

  2. מניה בסדר של אובייקטים קומבינטוריים: מספרים שלמים, פונקציות, עיקרונות ראשונים של פירוט.

  3. קומבינטוריקה אלמנטרית: קבוצות, רב-קבוצות וסידוריהן; מקדמים בינומיאליים ומולטינומיאליים.

  4. עקרון ההכלה ודחייה, פונקצית אוילר.

  5. גרפים: הצגת גרפים ואיזומורפיזם.

  6. רקורסיה ופונקציות יוצרות: הגדרות רקורסיביות, פונקציות יוצרות רגילות ואקספוננציאליות, רקורסיה לינארית עם מקדמים קבועים.

  7. אריתמטיקה מודולרית: קונגרואנטיות של מספרים שלמים, $\mathbb{Z}_m$, האיברים ההפיכים ב-$\mathbb{Z}_m$.

  8. מבנים אלגבריים: אקסיומות ודוגמאות של חבורות, חבורות ותתי חבורות ציקליות, מחלקות ומשפט לגרנז‘. חוגים ושדות סופיים.

דרישות והרכב ציון הקורס

10 אחוז עבודות בית ו 90 אחוז מבחן.

רשימת הקורסים האוניברסיטאית: 201.1.6201

פניות סטודנטים

נציג ועד
גיא שלום פרץ
נציג אגודה
רכזת סיוע אקדמי - הנדסה א‘ -עדי מילול
סגל חיצוני