נושאי לימוד

  1. סריגים. פונקציות אליפטיות.
  2. משטחי רימאן: הגדרות, העתקות, הגנוס, נוסחת רימאן–הורביץ.
  3. תבניות דיפרנציליות על משטחי רימאן. העתקת אבל–יעקובי.
  4. חקירה מקומית של פונקציות הולומורפיות. נקודות כהערכות על שדה הפונקציות המרומורפיות. מיון הערכות על שדה הרציונליים. שדה המספרים ה-$p$-אדיים. נוסחת המכפלה.
  5. עקומים אלגבריים מעל שדה. עקומים מעל $\mathbb{C}$ וקשר למשטחי רימאן.
  6. נקודות רציונלייות. אריתמטיקה של עקומים לפי הגנוס. עקומים חרוטיים (גנוס 0). כלל הסה. יצירה סופית של נקודות רציונליות על עקום אליפטי (גנוס 1): המקרה של עקום פרמה ממעלה 4.
  7. משטחים מודולריים ותבניות מודלריות. בנייה אנליטית של נקודות רציונליות על עקומים אליפטיים.

פרטי קורס

רשימת הקורסים האוניברסיטאית:
201.2.0451
רמה:
לתואר מתקדם
נק"ז:
4.0
ניתן לאחרונה

גרף תלויות

ניתן לגרור את הקודקודים, לחיצה כפולה למידע נוסף