- אריתמטיקה של $\mathbb{Q}_p$: סכומים ומכפלות, שורשים רבועיים, שורשים של פולינומים.
- תורת מספרים אלגברית של $\mathbb{Q}_p$: הרחבות סופיות, סגור אלגברי, השלמה של סגור אלגברי, ניסוח של תורת שדות המחלקות.
- טופולגיה של $\mathbb{Q}_p$: תכונות טופולוגיות אלמנטריות, מודלים אוקלידיים של $\mathbb{Z}_p$.
- אנליזה על $\mathbb{Q}_p$: התכנסות של סדרות וטורים, רדיוס התכנסות, מרחב הפונקציות הקבועות מקומית.
- אנליזה הרמונית על $\mathbb{Q}_p$: קרקטרים, מידת האר, אינטגרציה, טרנספורם פורייה.
- חוג האדלים כאובייקט המאחד את השדות $\mathbb{Q}_p$ לכל $p$: תכונות טופולוגיות, אינטגרציה וטרנספורם פורייה, נוסחת הסכימה של פואסון.
- התזה של טייט.
- רשימת הקורסים האוניברסיטאית:
- 201.2.0131
- רמה:
- לתואר מתקדם
ניתן לאחרונה
גרף תלויות
ניתן לגרור את הקודקודים, לחיצה כפולה למידע נוסף