19–2018–ב
ד"ר דניאל מרקייביץ'
נושאי לימוד
הנגזרת כפונקציה: פונקציות גזירות ברציפות, משפט דרבו. פונקציות קמורות: הגדרה, גזירות חד-צדדית, הקשר לנגזרת השניה. משפט הערך הממוצע המוכלל של קושי ושימושיו: כלל לופיטל, פולינומי טיילור ושארית לגרנז‘. שיטת ניוטון-רפשון. טורים מספריים: קריטריון קושי, טורים מתכנסים בהחלט, מבחן ההשוואה, המנה והשורש, מבחן דיריכלה, שינוי סדר הסכימה, נוסחת המכפלה של טורים, טורי טיילור, טורי טיילור של פונקציות אלמנטריות. מושג הפונקציה האנליטית. רדיוס התכנסות של טור חזקות. אינטגרל רימן. סכומי רימן. המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי (נוסחת ניוטון-לייבניץ). שיטות לחישוב אינטגלים (האינטגרל הלא מסוים): אינטרציה בחלקים, חילוף משתנה, פירוק לשברים חלקיים. אינטגלים לא אמיתיים. אינטגרציה נומרית: כללי האמצע, הטרפז וסימפסון. נוסחת סטירלינג. מבוא להתכנסות של פונקציות: קשיים עם התכנסות נקודתית. מבוא למשוואות דיפרנציאליות: המשוואה הדיפרנציאלית y‘ = ky. פתרון של משוואות דיפרנציאליות מסדר ראשון ע“י הפרדת משתנים, תנאי התחלה.