נושאי לימוד

  1. אינטגרל רימן: סכומי רימן, המשפט היסודי של החשבון הדיפרנציאלי. שיטות לחישוב אינטגרלים (אינטגרציה בחלקים, חילוף משתנה, שברים חלקיים). אינטרגלים לא אמיתיים ושימוש לטורים. אינטגרציה נומרית. נוסחת סטירלינג ושימושים נוספים אם יתיר הזמן.
  2. התכנסות במידה שווה והתכנסות נקודתית. תנאי קושי ובוחן ויירשטראס. טורי חזקות. טורי טיילור. פונקציות אנליטיות-ממשיות ופונקציות חלקות. קונבולוציות, קירובי יחידה ומשפט הקירוב של ויירשטראס. שימושים נוספים ככל שיתיר הזמן.
  3. חזרה על וקטורים ב-R^n והעתקות לינאריות, הנורמה האוקלידית ואי-שוויון קושי שוורץ. מושגים טופולוגיים בסיסיים ב-R^n. העתקות רציפות בכמה משתנים. מסילות במרחב, אורך מסילה. נגזרות חלקיות וכווניות, דיפרנציאביליות ופונקציות C^1. כלל השרשרת. הגרדיינט. פונקציות סתומות וכופלי לגרנז‘. בעיות אקטרמום בתחום חסום.

פרטי קורס

רשימת הקורסים האוניברסיטאית:
201.1.0021
רמה:
למחלקות אחרות
נק"ז:
6.0
ניתן לאחרונה

גרף תלויות

ניתן לגרור את הקודקודים, לחיצה כפולה למידע נוסף