20–2019–א

ד"ר ישי דן-כהן

נושאי לימוד

באופן כללי הגיאומטריה האלגברית עוסקת בחקר עצמים גיאומטריים המוגדרים ע“י נוסחאות אלגבריות, כלומר פולינומים במספר משתנים. התחום המתמטי הזה משיק לגיאומטריה דיפרנציאלית, לתורת המספרים, לטופולוגיה ולאלגברה, ויש לו שימושים גם בקומבינטוריקה, תורת האופרטורים, פיזיקה תיאורטית ועוד. הקורס הנוכחי ישמש מבוא לתחום קשה אך מרתק זה. הקורס מיועד לתלמידי מתמטיקה לתואר שני. קצב ההתקדמות והיקף החומר תלויים ברמת הידע של התלמידים וברצונם ללמוד באופן עצמאי חלק מהנושאים. תלמידים שירצו ללמוד עוד (אגדים וקטוריים, אלומות, קוהומולוגיה, תורת החיתוך וכו‘) יוכלו להמשיך בקורסי קריאה מודרכת.

רשימת נושאים
  1. נושאים מאלגברה קומוטטיבית: אידאלים ראשוניים ולוקאליזציה, מכפלות טנזוריות, חוגים נתריאניים ומשפט הבסיס של הילברט, מעלת טרנסצדנטיות של הרחבת שדות, משפט המימד.
  2. יריעות אלגבריות מעל שדה סגור אלגברית: יריעות אפיניות ופרויקטיביות, מורפיזמים, שדה הפונקציות הרציונליות, החוג המקומי בנקודה, יריעות חלקות.
  3. עקומים: השקילות הקטיגורית בין עקומים חלקים שלמים מעל שדה סגור אלגברית לבין שדות פונקציות ממעלת טרנסצדנטיות אחת.
  4. תורת החיתוך במישור הפרוייקטיבי (משפט בזו).
  5. חבורת פיקאר, אלומות הפיכות, שיכונים פרויקטיים ואוטומורפיזמים של מרחבים פרויקטיביים.
  6. שיטות דיפרינציאליות: תבניות דיפרנציאליות, השלמות של חוגים מקומיים, כיסויים לא מסועפים.

רשימת הקורסים האוניברסיטאית: 201.2.4111