פעילויות השבוע
לוגיקה, תורת הקבוצות וטופולוגיה
Structural approximation
דצמ 13, 12:15—13:30, 2016, Math -101
מרצה
Boris Zilber (Oxford)
תקציר
In the framework of positive model theory I will give (recall) a definition of ``structural approximation‘‘ which is used in my paper on model-theoretic interpretation of quantum mechanics. I will then present some general theory as well as a few examples, if time permits.
קולוקוויום
A geometric semantics of algebraic quantum mechanics
דצמ 13, 14:30—15:30, 2016, Math -101
מרצה
Boris Zilber (Oxford)
תקציר
We approach the formalism of quantum mechanics from the logician point of view and treat the canonical commutation relations and the conventional calculus based on it as an algebraic syntax of quantum mechanics. We then aim to establish a geometric semantics of this syntax. This leads us to a geometric model, the space of states with the action of time evolution operators, which is a limit of finite models. The finitary nature of the space allows us to give a precise meaning and calculate various classical quantum mechanical quantities. This talk is based on my paper ”The semantics of the canonical commutation relation“ arxiv.org/abs/1604.07745
אלגבראות אופרטורים
OH (continued)
דצמ 13, 16:00—17:00, 2016, Math -101
מרצה
Victor Vinnikov (BGU)
גאומטריה אלגברית ותורת המספרים
Local Cohomology Filtrations through Spectral Sequences
דצמ 14, 15:10—16:30, 2016, Math -101
מרצה
Alberto Fernandez Boix (BGU)
תורת החבורות וגיאומטריה
The generation problem in Thompson group F
דצמ 18, 14:30—15:30, 2016, -101
מרצה
Gili Golan (Vanderbilt)
תקציר
We show that the generation problem in Thompson group F is decidable, i.e., there is an algorithm which decides if a finite set of elements of F generates the whole F. The algorithm makes use of the Stallings 2-core of subgroups of F, which can be defined in an analogue way to the Stallings core of subgroups of a free group. An application of the algorithm shows that F is a cyclic extension of a group K which has a maximal elementary amenable subgroup B. The group B is a copy of a subgroup of F constructed by Brin and Navas.