פעילויות השבוע
AGNT
Commutative DG Rings and their Derived Categories
ינו 22, 15:00—16:15, 2020, -101
מרצה
Amnon Yekutieli (BGU)
תקציר
The commutative DG rings in the title are more commonly known as ”nonpositive strongly commutative unital differential graded cochain K-algebras“, where K is a commutative base ring. In the literature the standard assumption is that K is a field of characteristic zero - but one of our themes in this talk is that this assumption is superfluous (K = Z works just as well).
There are two kinds of derived categories ralated to commutative DG rings. First, given a DG ring A, we can consider D(A), the derived category of DG A-modules, which is a K-linear triangulated category. This story is well understood by now, and I will only mention it briefly.
In this talk we shall consider another kind of derived category. Let DGRng denote the category whose objects are the commutative DG rings (the base K is implicit), and whose morphisms are the DG ring homomorphisms. The derived category of commutative DG rings is the category D(DGRng) gotten by inverting all the quasi-isomorphisms in DGRng. (In homotopy theory the convention is to call it the ”homotopy category“, but this is an unfortunate historical accident.)
I will define semi-free DG rings, and prove their existence and lifting properties. Then I will introduce the quasi-homotopy relation on DGRng, giving rise to the quotient category K(DGRng), the ”genuine“ homotopy category. One of the main results is that the canonical functor from K(DGRng) to D(DGRng) is a faithful right Ore localization.
I will conclude with a theorem on the existence of the left derived tensor product inside D(DGRng), and with the pseudofunctor from D(DGRng) to the TrCat, sending a DG ring A to the triangulated category D(A).
Next semester I will talk about the geometrization of these ideas: ”The Derived Category of Sheaves of Commutative DG Rings“.
BGU Probability and Ergodic Theory (PET) seminar
Decomposition of random walk measures on the one-dimensional torus
ינו 23, 11:10—12:00, 2020, -101
מרצה
Tom Gilat (Bar-Ilan University)
תקציר
The main result in this talk is a decomposition theorem for a measure on the one-dimensional torus. Given a sufficiently large subset S of the positive integers, an arbitrary measure on the torus is decomposed as the sum of two measures. The first one $\mu_1$ has the property that the random walk with initial distribution $\mu_1$ evolved by the action of S equidistributes very fast. The second measure $\mu_2$ in the decomposition is concentrated on very small neighborhoods of a small number of points.
Representation Theory
The algebraic symmetry of the hydrogen atom
ינו 23, 16:10—17:00, 2020, 58-201
מרצה
Eyal Subag (Penn State)
תקציר
The hydrogen atom system is a fundamental example of a quantum mechanical system. Symmetry plays the main role in our current understanding of the system. In this talk I will describe a new type of algebraic symmetry for the system. I will show that the collection of all regular solutions of the Schrödinger equation is an algebraic family of representations of different algebras. Such a family is known as an algebraic family of Harish-Chandra modules. The algebraic family has a canonical filtration from which the physically relevant solutions and the spectrum of the Schrödinger operator can be recovered.
If time permits I will relate the spectral theory of the Schrödinger operator to the algebraic family. No prior knowledge about quantum mechanics or representation theory will be assumed.
BGU Probability and Ergodic Theory (PET) seminar
On the relation between topological entropy and asymptotic pairs
ינו 27, 11:10—12:00, 2020, -101
מרצה
Sebastián Barbieri (Université de Bordeaux)
תקציר
I will present some results that state that under certain topological conditions, any action of a countable amenable group with positive topological entropy admits off-diagonal asymptotic pairs. I shall explain the latest results on this topic and present a new approach, inspired from thermodynamical formalism and developed in collaboration with Felipe García-Ramos and Hanfeng Li, which unifies all previous results and yields new classes of algebraic actions for which positive entropy yields non-triviality of their associated homoclinic group.