עמוד זה מציג את כל האירועים המתרחשים במחלקה השבוע. ניתן לבחור שבוע אחר, או תאריכים שונים, בשדות בתחתית העמוד.

BGU Probability and Ergodic Theory (PET) seminar

Effective equidistribution of primitive rational points along long horocycle orbits and disjointness to Kloosterman sums

נוב 28, 11:10—12:00, 2019, -101

מרצה

Manuel Luethi (Tel-Aviv University)

תקציר

An observation by Jens Marklof shows that the primitive rational points of a fixed denominator along the periodic unipotent orbit of volume equal to the square of the denominator equidistribute inside a proper submanifold of the modular surface. This concentration as well as the equidistribution are intimately related to classical questions of number theoretic origin. We discuss the distribution of the primitive rational points along periodic orbits of intermediate size. In this case, we can show joint equidistribution with polynomial rate in the modular surface and in the torus. We also deduce simultaneous equidistribution of primitive rational points in the modular surface and of modular hyperbolas in the two-torus under certain congruence conditions. This is joint work with M. Einsiedler and N. Shah.

OA/OT Seminar

Learning Seminar: Takesaki‘s noncommutative Gelfand duality (part I)

דצמ 3, 10:30—12:00, 2019, -101

מרצה

Eli Shamovich (BGU)

תקציר

In this talk, we will start going over Takesaki‘s annals paper that proves that every separable C*-algebra A can be represented as continuous ”noncommutative“ functions with values in B(H) (H separable) on the space of representations of A on H. Furthermore, the universal enveloping von Neumann algebra of A is identified with all the bounded ”noncommutative“ functions on the same space

קולוקוויום

Cubic Fourfolds: Rationality and Derived Categories

דצמ 3, 14:30—15:30, 2019, Math -101

מרצה

Howard Nuer (UIC)

תקציר

The question of determining if a given algebraic variety is rational is a notoriously difficult problem in algebraic geometry, and attempts to solve rationality problems have often produced powerful new techniques. A well-known open rationality problem is the determination of a criterion for when a cubic hypersurface of five-dimensional projective space is rational. After discussing the history of this problem, I will introduce the two conjectural rationality criteria that have been put forth and then discuss a package of tools I have developed with my collaborators to bring these two conjectures together. Our theory of Relative Bridgeland Stability has a number of other beautiful consequences such as a new proof of the integral Hodge Conjecture for Cubic Fourfolds and the construction of full-dimensional families of projective Hyper Kahler manifolds. Time permitting I’ll discuss a few of the many applications of the theory of relative stability conditions to problems other than cubic fourfolds.

אשנב למתמטיקה

חבורות אינסופיות מנקודת מבט גיאומטרית

דצמ 3, 16:10—17:30, 2019, אולם 101-

מרצה

יאיר הרטמן

תקציר

בהרצאה נדון על נקודת מבט שהתפתחה מאוד בעשורים האחרונים בחקר תורת החבורות שבה מתבוננים על חבורה כאובייקט גיאומטרי. נתאר שתי דרכים לבנות שפה (או נקודות גבול) לחבורה אינסופית, ונדבר על קשרים בין ההסתכלות הזו לבין תכונות אלגבריות של החבורה.

AGNT

The Loxton - van der Poorten conjecture, and an elliptic analogue

דצמ 4, 15:00—16:15, 2019, -101

מרצה

Ehud de Shalit (HUJI)

תקציר

The conjecture of Loxton and var der Poorten is a criterion for a formal power series to be the expansion at 0 of a rational function, and is related to a famous theorem of Cobham in the theory of finite automata. It was proved by Adamczewski and Bell in 2013. Recently, Schafke and Singer found a novel approach that lead also to a simple conceptual proof of Cobham‘s theorem. We shall explain these results and the cohomological machinery behind them, and discuss what is missing from the picture to establish an elliptic analogue.


תאריכים אחרים