פעילויות השבוע
BGU Probability and Ergodic Theory (PET) seminar
Local limit theorem for inhomogeneous Markov chains (joint with Dolgopyat)
מרץ 7, 11:10—12:00, 2019, -101
מרצה
Omri Sarig (Weizmann Institute)
תקציר
An inhomogeneous Markov chain $X_n$ is a Markov chain whose state spaces and transition kernels change in time. A “local limit theorem” is an asymptotic formula for probabilities of the form
$Prob[S_N-z_N\in (a,b)]$, $S_N=f_1(X_1,X_2)+....+f_N(X_N,X_{N+1})$
in the limit $N\to\infty$. Here $z_N$ is a “suitable” sequence of numbers. I will describe general sufficient conditions for such results.
If time allows, I will explain why such results are needed for the study of certain problems related to irrational rotations.
This is joint work with Dmitry Dolgopyat.
קולוקוויום
Large deviations in random graphs
מרץ 12, 14:30—15:30, 2019, Math -101
מרצה
Wojciech Samotij (Tel Aviv University)
תקציר
Suppose that Y_1, …, Y_N are i.i.d. (independent identically distributed) random variables and let X = Y_1 + … + Y_N. The classical theory of large deviations allows one to accurately estimate the probability of the tail events X < (1-c)E[X] and X > (1+c)E[X] for any positive c. However, the methods involved strongly rely on the fact that X is a linear function of the independent variables Y_1, …, Y_N. There has been considerable interest—both theoretical and practical—in developing tools for estimating such tail probabilities also when X is a nonlinear function of the Y_i. One archetypal example studied by both the combinatorics and the probability communities is when X is the number of triangles in the binomial random graph G(n,p). I will discuss two recent developments in the study of the tail probabilities of this random variable. The talk is based on joint works with Matan Harel and Frank Mousset and with Gady Kozma.
אשנב למתמטיקה
בניה טבעית של המספרים הממשיים
מרץ 12, 18:10—19:30, 2019, אולם 101-
מרצה
יאיר הרטמן
תקציר
מה צריך בשביל לבנות את המספרים הממשיים? גבולות? לא בהכרח. בהרצאה נבנה ביחד את המספרים הממשיים. נא להביא אתכם את המספרים השלמים ואת פעולת החיבור עליהם.