פעילויות השבוע
BGU Probability and Ergodic Theory (PET) seminar
A Natural probabilistic model on the integers and its relation to Dickman-type distributions and Buchstab‘s function
דצמ 20, 11:00—12:00, 2018, -101
מרצה
Ross Pinsky (Technion)
תקציר
Let $\{p_j\}_{j=1}^\infty$ denote the set of prime numbers in increasing order, let $\Omega_N\subset \mathbb{N}$ denote the set of positive integers with no prime factor larger than $p_N$ and let $P_N$ denote the probability measure on $\Omega_N$ which gives to each $n\in\Omega_N$ a probability proportional to $\frac{1}{n}$. This measure is in fact the distribution of the random integer $I_N\in\Omega_N$ defined by $I_N=\prod_{j=1}^Np_j^{X_{p_j}}$, where $\{X_{p_j}\}_{j=1}^\infty$ are independent random variables and $X_{p_j}$ is distributed as Geom$(1-\frac{1}{p_j})$. We show that $\frac{\log n}{\log N}$ under $P_N$ converges weakly to the Dickman distribution. As a corollary, we recover a classical result from classical multiplicative number theory—Mertens‘ formula, which states that $\sum_{n\in\Omega_N}\frac{1}{n}\sim e^\gamma\log N$ as $N\to\infty$.
Let $D_{\text{nat}}(A)$ denote the natural density of $A\subset\mathbb{N}$, if it exists, and let $D_{\text{log-indep}}(A)=\lim_{N\to\infty}P_N(A\cap\Omega_N)$ denote the density of $A$ arising from $\{P_N\}_{N=1}^\infty$, if it exists. We show that the two densities coincide on a natural algebra of subsets of $\mathbb{N}$. We also show that they do not agree on the sets of $n^\frac{1}{s}$- smooth numbers $\{n\in\mathbb{N}: p^+(n)\le n^\frac{1}{s}\}$, $s>1$, where $p^+(n)$ is the largest prime divisor of $n$. This last consideration concerns distributions involving the Dickman function. We also consider the sets of $n^\frac{1}{s}$- rough numbers ${n\in\mathbb{N}:p^-(n)\ge n^{\frac{1}{s}}}$, $s>1$, where $p^-(n)$ is the smallest prime divisor of $n$. We show that the probabilities of these sets, under the uniform distribution on $[N]={1,\ldots, N}$ and under the $P_N$-distribution on $\Omega_N$, have the same asymptotic decay profile as functions of $s$, although their rates are necessarily different. This profile involves the Buchstab function. We also prove a new representation for the Buchstab function.
Lie Superalgebra Day
דצמ 25, 2018, room -101
Official Website (containing the full program) and Poster
Combinatorics Seminar
Piercing Edges with Subsets in Geometric Hypergraphs
דצמ 25, 10:45—11:45, 2018, -101
מרצה
Bruno Jartoux (BGU)
קולוקוויום
Borel-Weil-Bott theorem for algebraic supergroups and weak BGG reciprocity
דצמ 25, 14:30—15:30, 2018, Math -101
מרצה
Vera Serganova (University of California, Berkeley)
תקציר
We will review some results about superanalogue of Borel-Weil-Bott theorem, explain the role of Weyl groupoid and prove a weak version of BGG reciprocity. Then we illustrate how BGG reciprocity can be used for computing the Cartan matrix of the category of finite dimensional representations of the nontivial central extension of the periplectic supergroup P(4).
אשנב\צוהר למתמטיקה
הזמנה לתורת ההצגות עדכון: ההרצאה נדחתה
דצמ 25, 18:15—19:45, 2018, אולם 101-
מרצה
אינה אנטובה
תקציר
בהרצאה נדבר על הצגות של חבורות (ולא רק חבורות). תורת ההצגות היא המשך טבעי למושג ”פעולה של חבורה על קבוצה“, והוא בא לבטא את הקשר בין חבורות לבין סימטריות של אובייקטים שונים.
AGNT
Support varieties for supergroups
דצמ 26, 15:10—16:25, 2018, -101
מרצה
Vera Serganova (UC Berkeley)
תקציר
We define a functor from the category of representations of algebraic supergroups with reductive even part to the category of equivariant sheaves and show several applications of this construction to representation theory.