פעילויות השבוע
BGU Probability and Ergodic Theory (PET) seminar
Quasi-isometry classes of simple groups
אוק 18, 11:00—12:00, 2018, -101
מרצה
Rachel Skipper (Georg-August-University, Göttingen)
תקציר
We will consider a class of groups defined by their action on Cantor space and use the invariant of finiteness properties to find among these groups an infinite family of quasi-isometry classes of finitely presented simple groups.
This is a joint work with Stefan Witzel and Matthew C. B. Zaremsky.
קולוקוויום
Algebraic entropy on strongly compactly covered groups
אוק 23, 14:30—15:30, 2018, Math -101
מרצה
Meny Shlossberg (University of Udine)
תקציר
We introduce a new class of locally compact groups, namely the strongly compactly covered groups, which are the Hausdorff topological groups G such that every element of G is contained in a compact open normal subgroup of G. For continuous endomorphisms ϕ:G→G of these groups we compute the algebraic entropy and study its properties. Also an Addition Theorem is available under suitable conditions.
This is joint work with Anna Giordano Bruno and Daniele Toller.
אשנב\צוהר למתמטיקה
הבעיה השלישית של הילברט (אשנב)
אוק 23, 18:15—19:45, 2018, אולם 101-
מרצה
איליה טיומקין
תקציר
בקונגרס הבינלאומי במתמטיקה שהתקיים בשנת 1900 הציג דוד הילברט 23 בעיות פתוחות בכל התחומים של מתמטיקה. חלקן נפתרו (או נפתרו חלקית) וחלקן פתוחות עד היום.
הבעיה השלישית ברשימה התייחסה לקיום של פאונים בעלי נפחים זהים אך כאלה שלא ניתן לפרקם למספר סופי של תת פאונים חופפים. בעיה זו נפתרה תוך שנתיים ע“י תלמידו של הילברט – מקס דן. בהרצאה נדבר על הבעיה המקורית, על פתרונה ועל בעיות קשורות.
AGNT
Tamagawa Numbers of Linear Algebraic Groups over Function Fields
אוק 24, 15:10—16:25, 2018, -101
מרצה
Zev Rosengarten (HUJI)
תקציר
In 1981, Sansuc obtained a formula for Tamagawa numbers of reductive groups over number fields, modulo some then unknown results on the arithmetic of simply connected groups which have since been proven, particularly Weil‘s conjecture on Tamagawa numbers over number fields. One easily deduces that this same formula holds for all linear algebraic groups over number fields. Sansuc‘s method still works to treat reductive groups in the function field setting, thanks to the recent resolution of Weil‘s conjecture in the function field setting by Lurie and Gaitsgory. However, due to the imperfection of function fields, the reductive case is very far from the general one; indeed, Sansuc‘s formula does not hold for all linear algebraic groups over function fields. We give a modification of Sansuc‘s formula that recaptures it in the number field case and also gives a correct answer for pseudo-reductive groups over function fields. The commutative case (which is essential even for the general pseudo-reductive case) is a corollary of a vast generalization of the Poitou-Tate nine-term exact sequence, from finite group schemes to arbitrary affine commutative group schemes of finite type. Unfortunately, there appears to be no simple formula in general for Tamagawa numbers of linear algebraic groups over function fields beyond the commutative and pseudo-reductive cases. Time permitting, we may discuss some examples of non-commutative unipotent groups over function fields whose Tamagawa numbers (and relatedly, Tate-Shafarevich sets) exhibit various types of pathological behavior.