Adian Young (BGU)

Thursday, May 23, 2024, 11:10 – 12:00, -101


Temporo-spatial differentiations are ergodic averages on a probabilistic dynamical system $(X, \mu, T)$ taking the form $\left( \frac{1}{\mu(C_k)} \int_{C_k} \frac{1}{k} \sum_{j = 0}^{k - 1} T^j f \mathrm{d} \mu \right)_{k = 1}^\infty $ where $C_k \subseteq X$ are measurable sets of positive measure, and $f \in L^\infty(X, \mu)$. These averages combine both the dynamics of the transformation and the structure of the underlying probability space $(X, \mu)$. We will discuss the motivations behind studying these averages, results concerning the limiting behavior of these averages and, time permitting, discuss generalizations to non-autonomous dynamical systems. Joint work with Idris Assani.