The tracial Rokhlin property for actions of infinite compact groups
N. Christopher Phillips (University of Oregon)
Monday, June 6, 2022, 11:00 – 12:00, Building 32, Room 114
Please Note the Unusual Place!
The tracial Rokhlin property for actions of finite groups is now well known, along with weakenings and versions for other classes of discrete groups. The Rokhlin property for actions of infinite infinite compact groups has also been studied. We define and investigate the tracial Rokhlin property for actions of second countable compact groups on simple unital C*-algebras. The naive generalization of the verrsion for finite groups does not appear to be good enough. We have a property which, first, allows one to prove the expected theorems, second, is “almost” implied by the version for finite groups when the group is finite, and, third, admits examples.
This is joint work with Javad Mohammadkarimi.