2023–24–B
Dr. Moshe Kamensky
Abstract
עקב הערכות מיוחדת בעקבות המלחמה, יוצגו רק חלק מהנושאים, בהתאם להתקדמות בפועל. פרטים נוספים בעמוד הקורס במודל
Course topics
- Partially ordered sets. Chains and antichains. Examples. Erdos–Szekeres’ theorem or a similar theorem. The construction of a poset over the quotient space of a quasi-ordered set.
- Comparison of sets. The definition of cardinality as as an equivalence class over equinumerousity. The Cantor-Bernstein theorem. Cantor’s theorem on the cardinality of the power-set.
- Countable sets. The square of the natural numbers. Finite sequences over a countable set. Construction of the ordered set of rational numbers. Uniqueness of the rational ordering.
- Ramsey’s theorem. Applications.
- The construction of the ordered real line as a quotient over Cauchy sequences of rationals.
- Konig’s lemma on countably infinite trees with finite levels. Applications. A countable graph is k-colorable iff every finite subgraph of it is k-colorable.
- Well ordering. Isomorphisms between well-ordered sets. The axiom of choice formulated as the well-ordering principle. Example. Applications. An arbitrary graph is k–colorable iff every finite subgraph is k-colorable.
- Zorn’s lemma. Applications. Existence of a basis in a vector space. Existence of a spanning tree in an arbitrary graph.
- Discussion of the axioms of set theory and the need for them. Russel’s paradox. Ordinals.
- Transfinite induction and recursion. Applications. Construction of a subset of the plane with exactly 2 point in every line.
- Infinite cardinals as initial ordinals. Basic cardinal arithmetic. Cardinalities of well known sets. Continuous real functions, all real runctions, the automorphisms of the real field (with and without order).
Requirements and grading
הרכב הציון בקורס
-
כדי לעבור את הקורס צריך לעבור את הבחינה המסכמת בציון של 56 ומעלה. החומר לבחינה כולל את כל החומר שכוסה בפועל בקורס, לרבות ההרצאה ותרגילי הבית.
- אם הציון בבחינה המסכמת הוא 56 או יותר, אז הרכב הציון הוא:
- עבודות בית: 2 נקודות כל מטלה. תהיה מטלה אחת בשבוע, בקירוב
- בחינה מסכמת: 80 נקודות
-
אם הציון בבחינה המסכמת נמוך מ-56 אז הוא הציון הסופי.
- לא ניתן לקבל יותר מ-100
היעדרויות ואיחורים
אישור לקבלת הארכה להגשת העבודות ינתן לפי שיקול המרצה, בהתאם לסיבות המוגדרות מניעה חמורה בנוהל הבחינות של האוניברסיטה. בנוסף, יינתנו התאמות מיוחדות במסגרת המלחמה (להלן).
התאמות למשרתי מילואים
- התאמות למשרתי מילואים ונפגעי המלחמה יינתנו בהתאם לנוהל האוניברסיטאי.
- בפרט, סטודנטים שישרתו במילואים במהלך הסמסטר יהיו זכאים להגיש את המטלות עד סוף הסמסטר, לא יאוחר מה-26 ביולי 2024
- במקרים של מילואים ממושכים או מצבים מיוחדים, יתואם פתרון אישי
תלמידים שהמצבים הללו חלים עליהם, מוזמנים לפנות אלי לגבי התאמות.