2019–20–A
Course topics
-
Fields: the definition of a field, complex numbers.
-
Linear equations: elementary operations, row reduction, homogeneous and non-homogeneous equations, parametrization of solutions.
-
Vector spaces: examplex, subspaces, linear independence, bases, dimension.
-
Matrix algebra: matrix addition and multiplication, elementary operations, the inverse matrix, the determinant and Cramer’s law. Linear transformations: examples, kernel and image, matrix representation.
Requirements and grading
1 Fields: the definition of a field, complex numbers. 2. Linear equations: elementary operations, row reduction, homogeneous and non-homogeneous equations, parametrization of solutions. 3. Vector spaces: examplex, subspaces, linear independence, bases, dimension. 4. Matrix algebra: matrix addition and multiplication, elementary operations, the inverse matrix, the determinant and Cramer’s law. Linear transformations: examples, kernel and image, matrix representation.
University course catalogue: 201.1.9511
Students' Issues
- Class Representative
- אילאיל רים
- Aguda Representative
- רכזת סיוע אקדמי - הנדסה א’ -עדי מילול
- Staff Observers
-
- דר’ גיל שלו (Electrical engineering)
- פרופ’ אילנה ניסקי (Biomedical engineering)
- פרופ’ עודד פרגו (Biomedical engineering)
- ד”ר גבי סקלוסוב (Communication systems engineering)
- פרופ’ מיכאל אלחדד (Computer science)
- פרופ’ קריצבסקי אולג (Physics)
- פרופ’ מיכאל ליובלינסקי (Physics)
- פרופ’ דניאל גיטלר (Brain and Cognitive Sciences)
- פרופ’ מעוז שמיר (Brain and Cognitive Sciences)