2020–21–B

Dr. Irena Lerman

Course topics

In this course the basic concepts of one-dimensional analysis (a limit, a derivative, an integral) are introduced and explored in different applications: graphing functions, approximations, calculating areas etc.

  1. Limit of a function, continuity.
  2. Derivative, basic derivative formulas.
  3. Derivative of an inverse function; derivative of a composite function, the chain rule; derivative of an implicit function.
  4. Derivatives of high order.
  5. The mean value problem theorem. Indeterminate forms and l’Hopital’s rule.
  6. Rise and fall of a function; local minimal and maximal values of a function.
  7. Concavity and points of inflection. Asymptotes. Graphing functions.
  8. Linear approximations and differentials. Teylor’s theorem and approximations of an arbitrary order.
  9. Indefinite integrals: definition and properties.
  10. Integration methods: the substitution method, integration by parts.
  11. Definite integrals. The fundamental theorem of integral calculus (Newton-Leibniz’s theorem).
  12. Calculating areas.
Bibliography

Thomas & Finney, Calculus and Analytic Geometry, 8th Edition, Addison-Wesley (World Student Series).

University course catalogue: 201.1.9711

Students' Issues

Class Representative
שחר נחום
Aguda Representative
רכזת סיוע אקדמי - הנדסה ב’ ומכינות - ליאור גבריאל
Staff Observers