2017–18–B
Course topics
The system of the real numbers (without Dedekind cuts). The supremum axiom. Convergent sequences, subsequences, monotonic sequences, upper and lower limits. Series: partial sums, convergent and divergent series, examples, nonnegative series, the root test, the quotient test, general series, Dirichlet, Leibnitz, absolute convergence implies convergence (without a proof). Limits of functions, continuity, the continuity of the elementary functions, extrema in compact intervals. The derivative of a function, Lagrange’s Mean Value Theorem, high order derivatives, L’hospital’s rules, Taylor’s Theorem, error estimates, lots of examples. The Riemann integral: only for piecewise continuous functions (finitely many points of discontinuity). Riemann sums and the definition of the integral, The Fundamental Theorem of Calculus, the existence of primitive functions (anti-derivatives). Integration techniques: integration by parts, substitutions, partial fractions (without proofs), improper integrals, applications of integrals, estimation of series with the aid of integrals, Hardy’s symbols O, o and Omega, approximation of momenta and the Stirling formula.
Requirements and grading
The system of the real numbers (without Dedekind cuts). The supremum axiom. Convergent sequences, subsequences, monotonic sequences, upper and lower limits. Series: partial sums, convergent and divergent series, examples, nonnegative series, the root test, the quotient test, general series, Dirichlet, Leibnitz, absolute convergence implies convergence (without a proof). Limits of functions, continuity, the continuity of the elementary functions, extrema in compact intervals. The derivative of a function, Lagrange’s Mean Value Theorem, high order derivatives, L’hospital’s rules, Taylor’s Theorem, error estimates, lots of examples. The Riemann integral: only for piecewise continuous functions (finitely many points of discontinuity). Riemann sums and the definition of the integral, The Fundamental Theorem of Calculus, the existence of primitive functions (anti-derivatives). Integration techniques: integration by parts, substitutions, partial fractions (without proofs), improper integrals, applications of integrals, estimation of series with the aid of integrals, Hardy’s symbols O, o and Omega, approximation of momenta and the Stirling formula.
University course catalogue: 201.1.2361
Students' Issues
- Class Representative
- אמיר פלדמן
- Aguda Representative
- רכזת סיוע אקדמי - מדעי הטבע - אביטל פיימן
- Staff Observers
-
- איילת מארק (Faculty - Engineering)
- עמי ישעיה (Faculty - Engineering)
- רפאל שיקלר (Faculty - Engineering)
- פרופ’ דביר שבתאי (Faculty - Engineering)
- פרופ’ אורן שדות (Faculty - Engineering)
- פרופ’ פז כרמי (Computer science)
- פרופ’ דני הנדלר (Computer science)
- Eden Chlamtac (Computer science)
- Chen Keisar (Computer science)
- פרופ’ עופר ניימן (Computer science)
- איתן גרוספלד (Faculty - Natural sciences)
- רויטל בינדר (Faculty - Natural sciences)
- פרופ’ גיא שני (Software Engineering)
- ד”ר גרא וייס (Software Engineering)
- פרופ’ ארנון שטרום (Software and information systems engineering)
- פרופ’ אריאל פלנר (Software and information systems engineering)