2016–17–B

Prof. Ilya Tyomkin

Course topics

  • Fields: basic properties and examples, the characteristic, prime fields
  • Polynomials: irreducibility, the Eisenstein criterion, Gauss’s lemma
  • Extensions of fields: the tower property, algebraic and transcendental extensions, adjoining an element to a field
  • Ruler and compass constructions
  • Algebraic closures: existence and uniqueness
  • Splitting fields
  • Galois extensions: automorphisms, normality, separability, fixed fields, Galois groups, the fundamental theorem of Galois theory.
  • Cyclic extensions
  • Solving polynomial equations by radicals: the Galois group of a polynomial, the discriminant, the Cardano-Tartaglia method, solvable groups, Galois theorem
  • Roots of unity: cyclotomic fields, the cyclotomic polynomials and their irreducibility
  • Finite fields: existence and uniqueness, Galois groups over finite fields, primitive elements

University course catalogue: 201.1.7041