- Basic concepts of topology of metric spaces: open and closed sets, connectedness, compactness, completeness.
- Normed spaces and inner product spaces. All norms on $\mathbb{R}^n$ are equivalent.
- Theorem on existence of a unique fixed point for a contraction mapping on a complete metric space.
- Differentiability of a map between Euclidean spaces. Partial derivatives. Gradient. Chain rule. Multivariable Taylor expansion.
- Open mapping theorem and implicit function theorem. Lagrange multipliers. Maxima and minima problems.
- Riemann integral. Subsets of zero measure and the Lebesgue integrability criterion. Jordan content.
- Fubini theorem. Jacobian and the change of variables formula.
- Path integrals. Closed and exact forms. Green’s theorem.
- Time permitting, surface integrals, Stokes’s theorem, Gauss’ theorem
- University course catalogue:
- 201.1.0031
- Level:
- Advanced Undergraduate
- Credits:
- 6.0
Recently Given
Dependency Graph
Nodes are draggable, double click for more info