2024–25–A

Course topics

Basic combinatorics

  • Sample space and events. Probability mass function
  • Conditional probability. Law of total probability. Bayes? formula
  • Independence
  • Useful discrete distributions: uniform, binomial, geometric, Poisson, hypergeometric, negative binomial.
  • Expectation, variance, median, percentile
  • Functions of a random variable
  • Two dimensional distributions: joint distribution, marginal distribution, covariance, conditioning on marginals
  • Markov, Chebychev and Jensen inequalities
  • Normal distribution
  • Sequences of random variables: law of large numbers and central limit theorem

University course catalogue: 201.1.9921