2017–18–A
Dr. Saak Gabriyelyan
Course topics
The course discusses elements of linear algebra over the real and complex numbers. 1. The complex numbers. Linear equations: elementary operations, row reduction, homogeneous and non-homogeneous linear equations. 2. Real and complex vector spaces. Examples, subspaces, linear dependence, bases, dimension. 3. Matrix algebra. Matrix addition and multiplication, elementary operations, LU decomposition, inverse matrix, the determinant, Cramer’s law. 4. Linear transformations: examples, kernel and image, matrix representation. 5. Inner products, orthonormal sequences, the Gram-Schmidt process. 6. Diagonalization: eigenvalues and eigenvectors, the characteristic polynomial. Time permitting: unitary and orthogonal matrices and diagonalization of Hermitian and symmetric matrices.
University course catalogue: 201.1.9041
Students' Issues
- Class Representative
- נועה טוינה
- Staff Observers
-
- פרופ’ עלוה פלד (Structural engineering)
- ד”ר רוני קמאי (Structural engineering)
- איילת מארק (Faculty - Engineering)
- עמי ישעיה (Faculty - Engineering)
- רפאל שיקלר (Faculty - Engineering)
- פרופ’ דביר שבתאי (Faculty - Engineering)
- פרופ’ אורן שדות (Faculty - Engineering)
- איתן גרוספלד (Faculty - Natural sciences)
- רויטל בינדר (Faculty - Natural sciences)