Boundary representations of locally compact hyperbolic groups
Michael Glasner (Weizmann Institute of Science)
Thursday, July 11, 2024, 11:10 – 12:00, -101
Abstract:
Given a non elementary locally compact hyperbolic group G equipped with a left invariant metric d one can define a measure on the Gromov boundary called the Patterson Sullivan measure associated to d. This measure is non singular with respect to the G action and contains geometric information on the metric. I will discuss the koopman representations of these actions and sketch a proof of their irreducibility and classification (up to unitary equivalence), generalizing works of Garncarek in the discrete case. I will also describe connections with a recent work of Caprace, Kalantar and Monod on the type I property for hyperbolic groups.