Ergodic theory and symplectic packing
Misha Verbitsky (IMPA)
Tuesday, June 13, 2023, 14:30 – 15:30, Math -101
Abstract:
The group of diffeomorphisms acts on the space of symplectic structures on a given manifold. Taking a quotient by isotopies, we obtain the mapping class group action on the Teichmuller space of symplectic structures; the latter is a finite-dimensional manifold. The mapping class group action on the Teichmuller space is quite often ergodic, which leads to important consequences for symplectic invariants, such as symplectic packing problems. I would describe some of the problems which were solved using this approach. This is a joint work with Michael Entov.