גריגורי משביצקי

יום שלישי, 27 ביוני, 2017, 18:30 – 20:00, אולם 101-

תקציר:

אנחנו מכירים זהויות שונות: חוק חילוף לחיבור ולכפל, חוק קיבוץ לחיבור ולכפל, חוק פילוג, חוקים של כפל מקוצר כל אלה והרבה זהויות אחרות מוכרות לנו מבית ספר.

אומרים כי אלגברה (מבנה מתמטי) $A$ היא בעלת בסיס סופי אם הקבוצה של כל הזהויות של $A$ מוגדרת על-ידי קבוצה סופית $B$ של זהויות, ז“א כל זהות של $A$ ניתן להסיק מ-$B$. קיום או אי-קיום של בסיס טוב (סופי, בלתי תלוי) של זהויות הוא איפיון חשוב של מבנה מתמטי וגם עוזר לחישובים.

בעיית הבסיס הסופי של טרסקי היא השאלה על קיום אלגוריתם שמחליט עבור כל אלגברה סופית האם היא בעלת בסיס סופי. יש עוד בעיות מפורסמות על בסיס סופי. אני אסביר בעיות אלה וגם בעיות יותר פשוטות על בסיס סופי של זהויות וגם כמה שיטות הוכחה של קיום ואי-קיום של בסיס סופי של זהויות.