אופרטורים שהם כמעט חד-חד-ערכיים וכמעט על
אילן הירשברג
יום שלישי, 20 בפברואר, 2024, 18:00 – 19:30, אולם 101-, בניין מתמטיקה
אחד המשפטים הבסיסיים באלגברה לינארית אומר שאופרטור לינארי על מרחב וקטורי סוף מימדי הוא חד-חד-ערכי אם ורק אם הוא על. לא קשה לראות שמשפט זה אינו תקף כאשר מדובר במרחבים אינסוף מימדיים, כגון אלה שבהם עוסקת אנליזה פונקציונלית. בהרצאה אדבר על אופרטורי טפליץ: סוג של אופרטורים על מרחבי הילברט אינסוף מימדיים (מרחבי מכפלה פנימית שלמים) שהם ”כמעט“ חד-חד-ערכיים ו“כמעט“ על, במובן שהגרעין שלהם הוא סוף מימדי והם ”מפספסים“ מרחב סוף מימדי. ההפרש בין המימדים הללו, שנקרא האינדקס של האופרטור, מקודד לפעמים מידע גיאומטרי מעניין, למשל מספר הסיבוב של מסילה. בהרצאה אדון במושגים הללו, וככל שיתיר הזמן, אסביר גם מהו הקונטקסט האלגברי-אנליטי המופשט יותר שבו ניתן להבין אותם.