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A study of (4, B)-invariant subspaces via polynomial
models

PAUL A. FUHRMANNY and J. C. WILLEMSt

This paper describes an application of the theory of polynomial models to the study
of some natural objects in geometric control theory. In particular, it utilizes the
correspondence between factorization of polynomial matrices and invariant subspaces
to obtain, by the use of Toeplitz operators, & polynomial characterization of (4, B)-
invariant subspaces as well as those included in ker C. A geometric characterization
of feedback irreducibility is rederived.

1. Introduction

Over the last decade work in system theory was fragmented between groups
following a variety of approaches. Among the various techniques currently in
use one finds classical transfer function techniques (Wonham 1974), polynomial
system matrices (Rosenbrock 1970), an algebraic theory based on modules
(Kalman et al. 1969) and state space theory including geometric control theory
(Wonham 1974). To make communication feasible one needs an easy way of
translating results from one context to the other. So far what seems to be the
best unifying tool is the theory of polynomial models developed by one of the
authors. In Fuhrmann (1976) state space notions, coprime factorizations of
rational functions were related and a short route to realization theory deseribed.
This has been pushed further in Fuhrmann (1977) with the results of showing a
natural connection with the theory of polynomial system matrices developed
by Rosenbrock (1970). Further results along these lines were done in Fuhrmann
(1978) which introduced also models of rational functions and Fuhrmann (1979)
where feedback was studied by use of Toeplitz operators. The time seemed
ripe for further progress towards understanding geometric control theory in
terms of polynomial methods. Initial results were obtained by Emre (1978),
Emre and Hautus (1978) and Miunzner and Pratzel-Wolters (1978, 1979).
This paper tackles essentially the same problems as Emre and Hautus (1978)
but with somewhat different techniques and more complete results giving a
closer relation of the geometric concepts to problems of factorization of poly-
nomial matrices. Some of the results were first presented in Fuhrmann (1979).

2. Preliminaries

We collect in this section some basic information about functional, poly-
nomial and rational, models for linear transformations and linear systems.
The whole development will be over an arbitrary field #.
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468 P. A. Fuhkrmann and J. C. Willems

Define the F7((A7!)) to be the set of all truncated Laurent series with
coefficients in #'™, that is the set of all formal series of the form

fN=Y LM, feFr keZ (2.1)
: —w<ji<k
Fr((A~1)) contains two important subsets, namely F?[A] the set of all vector
polynomials with coefficients in » and A-1Fn{[A-1]] the set of all formal power
series in A~! with coefficients in F'* and vanishing constant term. We define
two projections =, and =_ acting in F*(A~1)}, suppressing in the notation the
dependence on %, by :

k .
™ X f[¥= XY [N (2.2)
—-w<jsgk 1=0
and .
o -1
—o<j<k j=—-

The ranges of the two projections coincide with Fr[A] and A-1F»[[A-1]]
and in view of the direct sum representation
Fr((A)) = F*[A] @A Fr[[A7]] (2.4)
we obtain
I=m +m_ (2.5)
Fr((A~1)) is a module over F[A] and F*[A] a submodule. Since there is a

natural isomorphism between F*((A~1))/F*[A] and A~1F?[[A~1]] the later has a
natural induced F[A]-module structure given by

P y=n_(py), peF(}), yer'F[(A7']] (2.6)

We introduce the shift operators in Fn((A-1)), F2[)] and A-1F[[A-1]]
and denote them by S, S, and S_ respectively. The shift operators are the
representation of the identity polynomial in the various modules. Thus

(S/)(A)=Af(A) for feF((A71)) (2.7)
S,f=8f for feFn[1], ie. S,=8|F)] (2.8)

Finally S_: A-LFn[[X-1]]—A-1Fn[[A-1]] is defined by
S_g=n_8g, Vgex1F"[[A-1]] ' (2.9)

We recall that given any linear transformation 4 in a finite dimensional
vector space ¥V over F then there is an induced F[A]-module structure in V
given by :
prv=p(4) for peF[A], veV (2.10)

With this definition V becomes a finitely generated torsion module over
F[A]. Thus from our point of view it is of interest to study the set of finitely
generated torsion modules which can be derived from F»[A] or A-1F*[A1]].
Since F7[A] is a free F[A]-module all its submodules are also free [14], but
certain quotient modules are torsion modules. In the case of A-1F"[[A-1]]
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certain of its submodules are finitely generated torsion modules and we will
give a characterization of the two. To this end we recall the following.

Theorem 2.1 (Fuhrmann 1976)

(i) A subset M of F7[A] is a submodule of F?[A] if and only if for some
polynomial matrix D, or matrix polynomial as we do not distinguish between
the two, in FrX2[A] we have M = DF™A].

Since Fr[}] is finitely generated so is any of its quotient modules.

Theorem 2.2 (Fuhrmann 1976)

The quotient module F*[A}/DFr[A] is a finitely generated torsion module if
and only if D is non-singular.

The inclusion relation between full submodules, that is submodules of
Fr[A] that correspond to non-singular D, is reflected in a division relation
between the corresponding polynomial matrices.

Theorem 2.3
(i) Let M,=D,Fnx"[A] be two full submodules. Then M,c M, if and only
if
D,=D,E, (2.11)
for some E,eF™ )]
(i1) Two full submodules are equal, i.e. D, Fr*n[A]= D, F**[ )] if and only
if
D,=D,U (2.12)
for a unimodular UeFnxn[}].
From now we will assume D is non-singular. We defineamapn,: F*{A]—

Fr2] by
mpf =Dn_D7Yf, VfeFrA] (2.13)
Theorem 2.4 (Fuhrmann 1976)
7 defined by (2.13) is a projection and ker m,=DF?[A].

Let Ky =range 7 and, as K, is isomorphic to F*[A]/DF"[A], we can give
K, an induced module structure by defining

P f=mp(pf) - for peF[A], [eKp (2.14)

We define the restriction of the shift to K ;, compression of the shift may be a
better terminology, by S, : Kj,—Kj, where

Spf=mpA-f=mpS,f, VfeKp ' (2.15)
We have the following characterizations of K,
Theorem 2.5

() Kp={/eF™{X]| D ex1F[[\-1]]}
(ii) K p={feF"[A]|f=Dh, heALFr[[A1]]}.
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While the first characterization requires D to be non-singular the second
one does not. This allows one to define (Emre and Hautus 1978) for any
polynomial matrix UeFnxm{}]

Ky ={feF"[)]|f=Uh, heA-LFm{[x-1]]} (2.16)

Since for every heA'F*[[A-1]] we have A - h=w, A-h+7m_A-h=7m A-h+
" S_hkitis clear that m, A+ h=£¢cF" Thus the next lemma follows from the defini-
tion of S,

Lemma 2.6 _
For each feK, there exists a unique vector £eF™ s.t.

(Spf)(A) = A+ [(A) — D(X)§ (2.17)

If we take as our setting A~ F"[[A~1]] we can obtain similar related results.
Given a non-singular polynomial matrix DeFnx"[A] we define the map
7l AL [A1]]— AL P2 [[A1]] by

#Pg=m_D='n+Dg, Vged1F[[A-1]] (2.18)

Theorem 2.7 (Fuhrmann 1978) .

7P defined by (2.18) is a projection map in A-1F?[[A~1]] and L, =range =P
is a finitely generated torsion submodule of A-'F*[[A~']]. Conversely if
Lc A-LF?[A-1]] is a finitely generated torsion submodule then L =L, for
some non-singular DeFn*r{A].

Since L, is a submodule of A-*F*[[A~1]] we can define the restricted shift in
L, denoted by Sp, which is defined by

SPg=8_g=m_X-g, Vgelp (2.19)
or equivalently
SP=8_|Lp (2.20)

K, and Ly, are isomorphic modules. Define a map p,: Lp,—Kp, by

ppg =Dy (2.21)
then its inverse pp,™ : K,—L), is given by
pp~t f=m_D7Y (2.22)

In terms of p;, we have the following commutative diagram which exhibits
the isomorphism of K, and L,

Pp

5° 5o (2.23)
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K, and Lj, with the actions of Sj, and SP respectively, are the functional
models associtated with D. The first one is a polynomial model whereas the latter
is a rational model. In spite of the isomorphism of the two classes of models it is
extremely important to carry along both of them as in some cases the use of
one is easier and both will be needed for the final classification of questions of
duality.

Given two polynomial matrices DeFnxn[)A] and D,eF™*m[A] we want to
characterize the similarity of S, and S;,. This amounts to the isomorphism
of K, and K. Similarly 82 and §P: are similar if and only if Lj, and L,
are isomorphic as F[A}-modules. The following theorem sums up the situation.

Theorem. 2.8 (Fuhrmaﬁ.n 1976)
(i) A map X: K,—Kj is an F[A]-module homomorphism if and only if
it is of the form '

Xf=mp Ef, VfeK, (2.24)
where E and Z, are polynomial matrices in F™X?[A] satisfying
ED=D,E, (2.25)

X is injective if and only if D and E, are right coprime and surjective if and
only if E and D, are left coprime.

(i) A map Y : L,—Ly, is an F[A]-module homomorphism if and only if it
is of the form
Yg=n_E,9, VgeL, (2.26)
where E and E, are as before. '
Y is injective if and only if D and E, are right coprime and surjective if
and only if D, and E are left coprime.

An extremely useful property of polynomial models is the correspondence
between invariant subspaces and factorization of polynomial matrices.

Theorem 2.9

(i) A subset M of K,, is a submodule, or equivalently an S,-invariant
subspace, if and only if .

M=D,K,, (2.27)
for some factorization
D=D,D, (2.28)
with DeFnxn[A].
(ii) A subset N of L, is a submodule, or equivalently an 8P-invariant
subspace, if and only. if
N=Lp, (2.29)

for some factorization (2.28).
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Proof
() Let D=D,D, and M=D,K;,. Clearly M<Ky, If feM then f=D,g

-with geK,,,. We compute

SD/=_7TD)\ *f=mpA- Dyg=D,Dyn_D, ! D! )t . Dlg=D17rDz)\ g
=D,8p,9eD, K,
Thus M is §p invariant. Infact we proved that D K, and Kj,, are isomorphic
and S| DKy, =D,Sp, D,

Conversely assume M<K, is Sp-invariant. Clearly M +DF#[}] is a
submodule of F#[A]. Hence M+ DF*[A]=D,F*[A] for some D,eF™*"[A].
Since DF#A]< D,F*[A] we have, Theorem 2.3, that D=D,D, for some
D,eFnxn[)X]. Thus

DF[A]=DyD,F[X]=D,D,(Kp, ®D,F*[\])=D,K,, & DF[A]

From this it follows that M =D, K, . :
Part (ii) follows from (i) by application of the isomorphism between K,
and L,

Under certain extra conditions we can get a more complete decomposition
of K,

Theorem 2.10
Given a factorization of a non-singular De F»*7[1] of the form
D=DD, (2.30)
with D,eFnx*[)X] and D,(A)~! proper then
K,=K, &D,K,, (2.31)
The following lemma, which partially generalizes the previous theorem to

the non-square case will be useful later on.

Lemma 2.11
Let UeFn>m[}] for every EeFr>[)] we have

EKy<Kgy, (2.32)
If E is left invertible, i.e. there exists an E,eF"*P[A] such that E(A)E(X)=F,
. then .
EK;=Kzy, (2.33)
Proof

If he AL Fm[[A-1]]is such that f = Uk then f = EUheK g; which proves (2.32).
If E\E=1I and feK g then f=EUL which implies that Uh=E,f is a vector
polynomial. Thus f=E(Uh)eEK.

The simplest submodules of K are the 1-dimensional. A 1-dimensional
submodule is an Sp-invariant subspace generated by an eigenfunction of S,
The next lemma characterizes these.
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Lemma 2.12
A polynomial vector feK, is an eigenfunction of Sp, corresponding to an

eigenvalue «€F, if and. only if

' _D¢
A—a

f(A) (2.34)

for the same vector £eF* that satisfies D(«x)§=0.

Proof

feK ,, is an eigenfunction if and only if (S, —al)f=0. Since, by Lemma 2.6,
SpH(A)=2M(A)—D(A)¢ for some £ we have Af(A)—D(A)é—af(A)=0 or
f(My=D)¢/(A—=). Since f is a polynomial we must have D(x)£=0. This
condition is clearly sufficient, for then D(A)é/(A—a)eKp as D DEj(A—a) =
E(A—a)ed1F7[A-1]] and

D D(A
(SD—ozI))‘—_i=7rD(A-—zx) . A(—L§=7TDD£=O

Similarly all eigenfunctions of S_ are given by g(A)=§/(A—«) for same
teF™ and «cF. _
To see the relation between this lemma and Theorem 2.9 let

D(A
oy =2

and choose a basis in F» for which £ is the first element. Let (d;(})) be the
matrix representation of D(A). Since D(x){=0 it follows that d,(x)=0,
i=1, ...,n. But then the diagonal matrix

A—o

is clearly a right factor of D.
In the analysis of linear transformations in finite dimensional vector spaces
it is of interest to decompose the space into a direct sum of invariant subspaces.
This analysis can be carried out effectively in the case of polynomial models.
The following result, related to the resultant theorem, extends those of
Fuhrmann (1976).

Theorem 2.13 .
Let D= D, E, = D,E,be two factorizations of De F*x*[A]with D, E.eFr*n[}].
(i) We have the representation
Kp=D,Kg +D,Kg, (2.35)

if and only if D, and D, are left coprime.
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(ii) The representation (2.35) is a direct sum representation, i.e.
DKy ND,Ky, ={0} (2.36)
if and only if £, and E, are right coprime.

This result can be immediately dualized.

Theorem 2.14
Let D=D,E,=D,E, be two factorizations with D, D,, E,eF"*"[A]. Then

LD=LE| +LE2 (2.37)
if and only if D, and D, are left coprime, and

if and only if E, and E, are right coprime.

Corollary 2.15

Let M;=DK,i=1, ...,k besubmodulesof K. Let M =M+ ... + M,,

and My=NM, then M =DK, and M,= DK where
(i) D is the g.c.l.d. of the D;, equivalently E is the l.c.l.m. of the E;, and
(ii) Dy is the l.c.r.m. of the D,, equivalently E, is the g.c.r.d. of the E;.

We note that Ly + ... +Lg =Lgand NLy =Ly,

If D,, D,eF"*n[A] then they may be left coprime or right coprime with
d,=det D; and D,=det D, having a common factor. However, if d, Ad,=1,
i.e. if the g.c.d. of d, and d, is one, then D, and D, are necessarily left coprime.

However if DeFnxn(\]and d =det D has a factorization d =d,d, into coprime

factors then this factorization induces related factorizations of .D into spectrally
different factors.

Theorem 2.16
Let DeFn*xn[2], d(A)=det D(A) and let d have a factorization

d=d, - d, (2.39),
into coprime factors. Then D admits two factorizations
D=D,E,=D,E, (2.40)

with det E,=d; (and hence with det D,=d, and det D,=d,). As a con-
_ sequence we have

Kp=D,K, ®D,Kp, (2.41)

Proof

Define M, ={feK ,|mpd;f=0}. Clearly M, are submodules of K, and the
coprimeness condition on d, and d, implies that M,NM,={0}. Since clearly
Kp=M,+ M, it follows that K,,=M, ®M,. Now M, have, by Theorem 2.9,
the representations M;=D;K, and we obtain (2.41).



A study of (4, B)-invariant subspaces via polynomial models 475

Since Sp| DK g, has, by Theorem 2.9 the characteristic polynomial det E; =e¢,
and this by construction divides d;. Since d =d,d, and on the other hand from
the representations (2.40) d=e,e, it follows necessarily that e,=d; up to a
constant factor.

We conclude this section by relating factorizations of transfer functions
_ and realization theory. If G())isa p x m strictly proper rational matrix function
then there are associated with it two coprime factorlza,tlons (Wolowch 1974,
Rosenbrock 1970, Fuhrmann 1976)

G(A)=N(N) D) =T(N)U()) (2.42)

where DeFmxm[}], TeFrxr[)] are non-singular and N, UeFr*m[)]. These
factorizations are unique up to right unimodular factor in one and a left
unimodular factor in the other. It is useful however not to restrict the
generality and assume a factorization of ¢ of the form

G(X) = NN D) M)+ P()) (2.43)

with no coprimeness conditions imposed. We may however assume without
loss of generality that D-1M is strictly proper. We associate now with the
factorization (2.43) a realization by the following procedure. We take K,
as a state space and define a triple (4, B, C) by

A=8p (2.44)
Bé=mpM¢ for fep™ (2.45)

and
Of = (N DY)y = (AN D) (2.46)

for all feK,,.

It has been proved-in Fuhrmann (1977) that this is indeed a realizaton of
G which is reachable if and only if M and D are left coprime and observable if
and only N and D are right coprime. We call this the realization associated
with the factorization (2.43).

3. Toeplitz operators and feedback

It is generally known what important role the Kronecker indices, i.e. the
reachability and observability indices, play in gystem theoretic problems in
particular those related to feedback invariance, pole shifting and canonical
forms (Rosenbrock 1970). Preceding the study of these problems certain
factorizations and factorization indices have been for a long time the object of
study in the mathematical literature, mainly in the study of Wiener-Hopf
systems of equations, Toeplitz operators, etc. (Gohberg and Krein 1960,
Gohberg and Feldman 1971). Lately there has been some effort in clarifying
some of the connections between the various theories.

In Fuhrmann (1979) the role of Toeplitz operators in the study of feedback
equivalence has been elucidated whereas Fuhrmann and Willems (1979) is an
attempt to clarify the relations between Wiener-Hopf factorizations of rational
functions, coprime factorizations and the connection between factorization
indices on the one hand and Kronecker indices on the other. Other recent
work in this direction is Gohberg et al. (1978).

CON.: . ' . R
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Here we establish the facts relevant to this paper.
Given AeFP*m((A~1)) then the Toeplitz operator induced by 4, which will
be denoted by 7T, is the map T, : F™[A]— FP[A] defined by

T f=mn,Af for all feFm[}) (3.1)

A Toeplitz operator T , is called rational if 4 is rational, causal if Ae FPxm{[\-1]]
and strictly causal if A is an invertible element of the ring F™xm[[A-1]], in which
[}

case it is called a bicausal isomorphism. If A(N)= Y A;N then 4 is a
i=0
bicausal isomorphism if and only if A4, is an invertible element of Fmxm,
Let AeFrxm((A-1)). We say a factorization of the form

AN =TNDNUN) (3.2)

is a left Wiener—Hopf factorization at infinity of A if I' is a bicausal isomorphism
in Frx2[[X-1]], U is unimodular in F™xm[A] and

where A(A) =diag (A*1, ..., A)eFr™>r((A71)). The indices «, ..., x, are called the
left factorization indices. We assume them decreasingly ordered that is
K S Ky ... 2K, In an analogous way we define the right factorizations and
the right factorization indices. It is quite easy to prove that left and right
factorizations of infinity of a rational function AeFPxm((A-1)) exist. For a
proof one reference is Fuhrmann and Willems (1979).

Feedback is going to play an important role in the sequel. For a reachable
pair (4, B) we characterize feedback equivalent pairs in terms of coprime
factorizations.

Let (A4, B) be reachable and let H(A).D(A)~! be a right coprime factorization
of (Al — A)'B. Then the pair (8p, 7p) is isomorphic to (4, B). Thus all the
information relative to (4, B), including the reachability indices, are derivable
from D. The following theorem, due to Hautus and Heyman (1978) (Fuhrmann
1979) is useful in the analysis of feedback.

Theorem 3.1

Let (A, B) be a reachable pair, with AeF»xn, Be Fmxm and let H(X).D(X)?
be a coprime factorization of (Al — 4)-'B. Then a necessary and sufficient
condition for a pair (4,, B,) to be feedback equivalent to (4, B) is that

(AL - 4,)7'B, = RH(A)(P(A) +@Q(A)) P (3-3)

where R and P are non-singular matrices and @eF™<"[A] is such that QD!
is strictly proper.

If we let Dy=D+Q and associate with the pairs (4, B) and (4,, B;) the
equivalent pairs (S, =) and (Sp,, mp,) then the invertible map ¥ : K, —»Kj,
for which

8,Y-Y8p =BK=mp)K . (3.4)
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is given by a Toeplitz operator induced by DD, i.e. by T 5y - where
Tpp,f=m DD, f (3.5)

Thus D and D, are related to feedback equivalent pairs if and only if
D(A)D,(A)~1=T(A) is an invertible element of Fmxm[[A-1]], i.e. by a bicausal
isomorphism.

The connection between the Kronecker indices, coprime factorizations and
Wiener-Hopf factorizations is summarized in the following theorem (Fuhrmann
and Willems 1979).

Theorem 3.2
Let G(X) be a strictly proper transfer function and let

G(X) =N AN)DA)72 =Dy (A)7N() (3.6)

be coprime factorizations of G. Let (4, B, C) be any canonical realization of
G. Then
(i) The reachability indices of (4, B) coincide with the left factorization
indices of D,.
(ii) The observability indices of (A4, C) coincide with the right factorization
indices of D,.

There is a close connection between Toeplitz operators and projections.
We state it as a theorem.

Theorem 3.3

Let D, D,e Fmxm[}] such that DD,~* is a bicausal isomorphism. Then the
following diagram is commutative

Dy

Lp,——Kp

1

o Top,? (3‘7)

Lp——K&,
Thus #P|Ly, is isomorphic to Tpp 72| Kp,.
Proof
Let heLy, then
ppmPh=Dn_D='w Dh=Dn_D 'z, DD, D,h
=mpTpp,~(D1h)=Tpp,~'pp,k
as D,heKy, and T, - maps Kj, onto K,

Corollary 3.4

D, D,eFm™m[}]. Then DD;7! is a bicausal isomorphism if and only if
7P|Ly, is an invertible map from Lj onto L, In that case its inverse is
given by #P1|L,,

R2
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Proof

Follows from the commutative diagram (3.7).
The preceding results allow us to study feedback also in the setting of
rational models. Consider the following diagram

Fm
D / \.D‘
. pp™?
Kp

L, (3.8)
Sop ! i
pp~"
Ky Lp

which is clearly commutative as for feF™¢,=' npé=D"1Dn_D Y =nD"1{.
Thus the pair (Sp, wp) acting in the state space K, is isomorphic to the pair
(8P, w_D-1) acting in Ly,

The 'qurest,ion of feedback equivalence of two such pairs is resolved by the
following. ,

Theorem 3.5

The pairs (8P, #_D-1) and (SPs, #_D,™1) acting in the state spaces L;, and
Ly, respectively are feedback equivalent if and only if DD;~! is a bicausal
isomorphism. In that case #P|Lj, is an invertible map of L, and L, and
we have '

8PrP — wP8Pr=m_D1K, (3.9)

for some K, : Lyj —F™.

Proof

The result follows easily, by isomorphism, from Theorem 3.1. To check
(3.9) we start with (3.4) and obtain

pp H{SpTpp,1— TDD,“‘SDI}Pm =pp ' mpKpp,
SDPD‘.I TDDI_‘P-DI _WDPDA_ISDlpr = P—‘D_IKPDx
807D — P80y =7 DK,
with Kl =KPD1'

We conclude this section with some easy factorization results which are
useful in the sequel.
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Theorem 3.6
Let AecFrxm[ )] with p <m. Then the following conditions are equivalent.

(i) AF™A]=Fr[A]. .

(i) A4 is right invertible, i.e. there exists a BeF™*P[A] for which AB=1.
(iii) The g.c.d. of the determinants of all p x »p minors is equal to one.
(iv) The left factorization indices at infinity are all zero.

Proof

Let e,, ..., e, be the standard basis for F». If we assume (i) then there
exist b,cF™[A] for which e;=A4b,. If B(})is the m x p matrix whose columns
are by, ...,b, then AB=1I and (i) implies (ii). Conversely assuming (ii) we

have BF?[A]< Fm[A] and FP[A]=ABF?r[A]c AF™[A]< FP[A] and necessarily
we have equality throughout so (i) follows.
m
Let A® be the 1 x compound matrix induced by A consisting of all

r
p x p minors ordered lexicographically. B®) is similarly defined and we have
the general relation
(AB)®) = A® B®
and it follows that A® B®)=1 which shows that (ii) implies (iii).

If (iii) is assumed then the Smith form of 4 is (Z, 0) and so for some uni-
modular matrices U and V we have U(M)A(A)V(A)=(, 0) or

UMt 0
AN =UA* )V (3= 0)( ) 40
o I

and (iv) follows. Finally assume (iv) then choose a unimodular matrix U so
that 4(A)U(A) is column proper. This means that 4(A)=(D, 0)U(A) with D
constant-square non-singular. But then

D1
BN =0 ( )
0

is a right inverse.

The preceding theorem is useful in proving a factorization result for singular
polynomial matrices.

Theorem 3.7
Let AeFPxm[}] be of full row rank. Then there exists a factorization
A(A)=A0(A)A1(A) (3.10)

such that 4,eFP*P[A]is non-singular and 4, isright invertible. A4, is uniquely
determined up to a right unimodular factor.
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Proof
Let M = AF7[)] then M is a submodule, in fact a full submodule, of F?[A]

and hence has, by Theorem 2.1, a representation as M = A FP[A]. Since
A(NéeM for each £eF™[A] (3.10) follows.

4. Polynomial models and (4, B)-invariant subspaces.

Let us consider the pair (4, B) acting in the state space X. Denote by #
the range of B. A subspace V<X is called an (4, B)-invariant subspace
(Wonham 1974) of

AV V+ 2 . (4.1)

A subspace V is an (4, B)-invariant subspace if and only if for some feed-
back map F we have

(A+BF)V¢ 14 (4.2)

Thus by feedback we may make V into an invariant subspace of a feedback
equivalent operator. A family {V,} of (4, B)-invariant subspaces is called
compatible if for some F

AV, <V, +% foralla« (4.5)

The following simple lemma will be of use later on.

Lemma 4.1

Given the pair (4, B) and two (4, B)-invariant subspaces V, and V,.
If V<V, then V, and V, are compatible.

Proof

Choose a basis v,, ..., v,,, V4,41, --., V,, fOr Vysuch thatv,, ..., v,, is a basis of
Vi. Since Av;=w;— Bu; with w,eV, and w,eV; if 1<i<y,;, we let Fv,=u,
and extend the definition of F arbitrarily to the whole space.

By induction the lemma can be extended to cover the case of chains of
(4, B)-invariant subspaces.

Let now H(A)D(X)~! be any right coprime factorization of (M — 4)71B.
Then if (4,, B,) is a pair feedback equivalent to (A4, B) and isomorphic to
(Sp,» mp,) this, by Theorem 3.1, occurs if and only if DD,~! is a bicausal
isomorphism. This is the key to the characterization of (A4, B)-invariant
subspaces of K;,. In the following the reference to (4, B)-invariant subspaces
is always relative to a realization associated with a given factorization of the
transfer function by the procedure outlined in § 2.

Theorem 4.2
Let D(A)eFmxm[A]. Then a subspace M of K, is an (A, B)-invariant
subspace, i.e. (Sp, mp)-invariant subspace, if and only if there exist
D,, E,, FieFmxm[ )] such that )
(i) M=Tpp,~(E,Kp,)
() D,=E,F,
(ili) DD, is a bicausal isomorphism.
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Proof

Assume there exist D,, E, and F,eF™**[}] such that (i)-(iii) are satisfied,
then (ii) implies that E,K . is an S, -invariant subspace of K, . From (iii) it
follows that the pairs (Sp, mp) and (Sp,, 7p,) are feedback equivalent with
T pp,~1, the Toeplitz operator induced by DD,~! being an invertible map from
K, onto K, satisfying

SpTpp,~r—Tpp,~ Sp,=mp+ K (4.4)

for some K : K, —Fm This implies that M is an (4, B)-invariant subspace.

Conversely assume M < Kp is an (4, B)-invariant subspace of K. By
the definition of (A4, B)-invariant subspaces M, or its isomorphic image, is an
invariant subspaces of a feedback equivalent pair, a pair which without loss of
generality we identify with (S;,, m5,). This implies that DD, is a bicausal
isomorphism. The map from K, onto K, that exhibits the feedback, i.e.
that satisfies (4.4) is the corresponding Toeplitz map. Since Sp -invariant
subspace are of the form E K. for some factorization (ii) it follows that M has
a representation (i).

In the representation of (A, B)-invariant subspaces we do not expect
uniqueness but we do expect uniqueness modulo feedback equivalence and
indeed this is the case.

Theorem 4.3
Let M =T, (E;Kp,) =1, 2be two representations of an (4, B)-invariant
subspace of K, satisfying the conditions of Theorem 4.2 then (Sy , 7z ) and

(Sg,, 7r,) are feedback equivalent or stated differently F,F;~1 is a bicausal
isomorphism.

Proof

If M=Tpp-(EKg,) then Ty p,-1=Tp p(Tp,p—1)"! is an invertible
map of K, onto K, which satisfies T, -(E,Kp )=E,Kp,. Now for
feKp, we have Ty p 1 Eif=n,D,D,;"  E\f=n,E,F,F\7\ f=q Em F,F -1f+
m, By _F,F,7' f=E,g for some geKp, This implies g=#» F,F,~1f. By
symmetry we have the invertibility of 7'y, 5 -1.

It is of considerable interest to characterize the right factors F,e Fmxm[}]
which can be left multiplied to yield a feedback equivalent system to (S, 7p).
The key to this are Wiener—Hopf factorizations.

Theorem 4.4
Given non-singular D and F, in Fm*m[)]. Then there exist E,eFmxm[)]
such that
() D;=E,F,, and
(ii) DD, !is a bicausal isomorphism if and only if all the left Wiener—-Hopf
factorization indices (at infinity) of DF -1 are non-negative.

Proof

If D,=E,F, and ['=DD,! is a bicausal isomorphism then DF,~1=TE,.
Now let E, = QAU be a left factorization of E, then necessarily the factorization
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indices of E, are non-negative, being the reachability indices of the pair
(8g,, mg,). It follows that

DF,1=(T'Q)AU
i.e. DF,~! has non-negative left factorization indices.

Conversely if DF,71=TAU with ‘A(})=diag (A« ..., Ak,,) With x> ...
2k, > 0 then define E,=AU. It follows that D=QD, with D,=E,F, and
Q a bicausal isomorphism.

In terims of the rational models we can state Theorem 4.2 as follows.

Theorem 4.5

A subspace M of Ly is an (A, B)-invariant subspace if and only if there
exist Dy, E,, F.e F™m[}] such that

(i) M =nPLyp,
(i) D,=E,F,

(iii) DD, is a bicausal isomorphism.

Actually we can strengthen the previous result a bit.

Theorem 4.6 .
A subspace M of Ly is an (A, B)-invariant subspace if and only if

M ==PL (4.5)
for some submodule L of A-LFm{[A-1]].

Proof

In view of the previous theorem all we have to prove is that the image
under the projection 7P of any submodule of A-1F™[[A-1]]is (4, B)-invariant
subspace of L;,. Equivalently we have to show that if heL then there exists
heL and £eF™ such that

SDth=ﬂDhl+7r_D_lf (4.6)

We will prove (4.6) with &, =8k and ¢ =(Dh)_,. In this case

SDTrDh —_ 7r‘DS_h = 7r_A1r_D_17T+Dh — ﬂ_D‘1ﬂ+D7r_)\h
=n_AD'm DA —n_D='m Db
=m_D~Y{An,Dh—n ADh}=n_D-1¢

* Corollary 4.7
A subspace M of K, is an (4, B)-invariant subspace if and only if it has the
representation :

M =npm, DL (4.7)
for any submodule L of A-1F™[[A-1]].

We point out that if D(A)~! is proper then (4.7) can be replaced by the
simpler form ‘

M=n DL (4.8)
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Corollary 4.8 A
If M, and M, are (A, B)-invariant subspaces of L, then so is M, + M,.

Proof

Let M, =nPL, then M =xPL with L =L, + L, independently of course of the
setting the result holds.

As an example we compute the 1-dimensional (A4, B)-invariant subspaces
of K,

Lemma 4.9

A subspace M of K,, is a 1-dimensional (4, B)-invariant subspace if and
only if it is spanned by a vector polynomial of the form

D(A)— D(a
=y (222 ¢

for some £eF and éeFm™,

(4.9)

Proof

The 1-dimensional submodules of A-LF7[[A\-1]] are spanned by one function
of the form £/(A—«). The result now follows from Corollary 4.7.
Again we remark that if D(A)~! is proper (4.9) simplifies to

(D(A) — D(«))€

==

(4.10)

The structure of (4, B)-invariant subspaces reflects the structure of invariant
subspaces of a linear transformation. In that case a 2-dimensional invariant
subspace may be one of two kinds, either spanned by two linearly independent
eigenfunctions or by an eigenfunction and a related generalized eigenfunction.
Thus a 2-dimensional (4, B)-invariant subspace of K 5, assuming for simplicity
that D(A)~! is proper, is either of the form

{(D(ﬁ D(a))§ (D(X)— D(ﬁ))é}

)—
span . , Py

or

(D(N)— D(@))é (D(A) - D(w) — D}{e)(A = a))¢
span { A—a ’ (A—o)? }

Obviously this analysis can be pushed further but we prefer to leave it at
that.

As an example we consider the case of d(A)= A", i.e. a single input system
given in Brunovsky canonical form. The pair (4, b) is represented in this case
by (84, mz) which relative to the basis {1, A, ..., A»71} of K, » has the matrix
representation

0 1
A=]1 , b=| 0
1 0 nxn 0 nX1
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The 1-dimensional (4, b)-invariant subspaces are given by multiples of

d()\)-—d(a)_ An— g
A—x  A—a

=Ar L a A 24 L 4o

or in a vector representation by multiples of

an—l

x

1

The 2-dimensional subspaces are either spanned by vectors of the form

an-1 ﬁn—l
« |, | B
1 1

with a5 B or alternatively by the span of

AT — "

A—a

and

A" — o — na™ 1 Aat)

=242 A7 34+ .. +(n—a)a™?

A—a
or equivalently by

[(n— 1)an—27]

a'n.—l ,

: 20

span | o |,
1
1
| o

Starting with the transfer function G(A) and the coprime factorizations
GA)=NA)DA)1t=T(N)U(A) (4.11)

then the pair (4, B) induced by T and U through 4 =8, and B¢ ==, U¢ is
isomorphic to (S, 7,) and hence a characterization of (4, B)-invariant sub-
spaces can be given in these terms.

Theorem 4.10
A subspace V<K, is an (A, B)-invariant subspace if and only if there

 exist Dy, E,, F,eF™m[}] such that

V =Tax_NaPLy, (4.12) "
D,=E,F, (4.13)
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and

DD, is a bicausal isomorphism (4.14)

Proof
From T-1U = ND-! we obtain

UD=TN (4.15)

and the assumption of the coprimeness of the factorizations (4.11) and Theorem
2.8 imply that the map X : K,— K defined by

Xf=m,Uf, VfeKp (4.16)

is an isomorphism. Thus a subspace V < K, is an (4, B)-invariant subspace
if and only if it is image under X of an (4, B)-invariant subspace of K, and
these were characterized by Theorem 4.2. Let therefore XM =V with
M=TppE Ky, then

V=n,Unr, DD, E\Kp =Tn_T-Un, DF,7* E,"* B, K,
=Tn ND?n,DLp =Tw_Nn_D7'n,DLp =Tn_N - nPLjy,

Note that Ly, is a submodule of L, but #PLy, is just a subspace of L,
The map h—n_NPk is an isomorphism of Ly into L, and so n_N#nPLy is a
subspace of L, which under 7' is mapped into an (4, B)-invariant subspace of
K. .

We use the previous theorem to characterize all 1-dimensional (A4, B)-
invariant subspaces of K,. Assume without loss of generality that D is
column proper. A l-dimensional subspace of K, is spanned by

(D(A) — D(«)§)

A=
==

and so we compute X/.

' A)— D{a UND(XN) - U(N D«
XfmmgUf=mpU(N) (_DU_(_))g:,,T( (MDQ) — U D(e)¢

A—a A—a
T(AMN(A) = U(N).D{a N(A)=N(x
e TN = U <)>§=ﬂT{T(A)( - ))g
+T(A)N(a)—U(A)D<a)§}
A—a
_ {T(A)N(a)—U(A)D(a)} ¢
s T A—a
as “
T()) w éeker mp

On the other hand

a)y— D o
,«l(A)=(T“>N‘ )= VD >) ;
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i1s in K as, since T'(x)N{a) — U(a)D(«) =0, it is in FP[A] and

N(a) TX)1U(X)Dfe
Y, =, {A£:+ () ,\_(a) ()§}=0

and so the subspace is spanned by

T(A)N () — U(A)D(a
fl(A)=( (A) ())‘“a() ())5

If U(A)=TI then T(M)N(X)=D(}) and we can rewrite f, in the form ‘

A)—T(a)N(x
WF(T( )~ Tl ))‘_f

which is in agreement with the previously obtained characterization.
Using Theorem 4.6 we can remove the restriction on ¥, in Theorem 4.10
and state it as follows.

Theorem 4.11 4
A subspace V<K is an (4, B)-invariant subspace of the pair (Sz, 7pU),
where

G'=T—1iJ=ND‘1 (4.17)
are cdprime factorizations of @, if and only if
V=Tn_N=PL (4.18)
for some submodule L of A-1F™[[A-1]].

5. Polynomial characterization of (4, B)-invariant subspace in ker C

In this section we study (4, B)-invariant subspaces which lie in the kernel
of C. This study is in terms of the numerator polynomials in the left or right
coprime factorization of the transfer function G(A)=C(Al— A) 1B of the
given system. Previous work along these lines has been that of Emre (1978) -
and Emre and Hautus (1978) where some applications are given. Of course
the best source for the usefulness of this concept in system design is Wonham
(1974).

In order to obtain some feeling for the problem and the way zeros come
into the picture at all we consider first the scalar case. Under an element of
the feedback group an (4, B)-invariant subspace is mapped onto another
(A4, B)-invariant subspace. Thus we may without loss of generality assume
that the transfer function is of the form g(A)=p(A)/A* with degp<n—1.
This is equivalent to the assumption that we have a realization in Brunovsky

canonical form. In fact if p(A)=p, ;A" 1+ ... +p,
0...... 0 1

1 il o acsmw) (5.1)
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is a reachable realization of p(A)/A*. Any l-dimensional (4, B)-ihvaria,nt
subspace of this realization is spanned by a vector of the form

o1\

Thus zeker C if and only if p, ;0" 1+ p, 02+ ... +p,=0, i.e. if and only
if p(a})=0. Of course in this case A —« is a factor of p(A).

We use next our characterization of one-dimensional (A, B)-invariant
subspaces in the vectorial case. Let G(X) be a p x m strictly proper rational
function having the coprime factorizations -

G(A)=NQA)D(A)L=T(X)1U(A) (5.2)
Using the right', coprime factorization as a basis for a realization in K, we

characterized the one dimensional (4, B)-invariant subspaces of K, as those
spanned by vector polynomials of the form

(D(3) — D())

f) =mp =

£

" for same «cF and £eF™. Now for any feK,,, Cf=(ND-Yf)_,. In our case

A—d A—d

_ -1
(Do (PO=D@\ ) _(FQE) _(NDA D) ,
A—a 1 A—a )4 A—a 1
The right term vanishes as N D1 is strictly proper and so is D(x)¢/(A—«),
and so there is no term in A~1. Also since

N(N)E _(N(A)—N(x) §+N(¢)f
A—a A—a A—a

oo (VY _(N@EY o
A—a J A—a /4
Thus feker C if and only if {cker N(«). But N(a)é =0 corresponds to a
right factor of N. In fact if we complete ¢ arbitrarily to a basis ¢, ..., e,

of F™ with e, = ¢ then relative to this basis the first column of N(x) is zero.
Hence N(]) is divisible on the right by

Cf= (ND—lnD (D)= D)) f) _ ( N Dot (P =D() f)

we have
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Next we start from the coprime factorization G=T-1U. One-dimensional
(4, B)-invariant subspaces have been characterized previously and are of the
form
T(A)N(a) — U(A)D(a)

A= =

£

We have seen, and this is easily checked directly, that feker C-if and only
if N(«)é=0. Thus f(X)=U(A)n/(A—«) where n=D(a)é. Since feK, we must
have U(a)yp=0. Again this corresponds to a right factor of U.

Before attacking the general problem we characterize the A4-invariant
subspaces in ker C via polynomial models. Let N(A)D,(A)~! be a factorization
of G,(A) which is assumed to be strictly proper. In K, A4, is defined by
A4,=8p, and

Cf=(NDy 1), for feKp, (5.3)

Theorem 5.1

A subspace M of K, is an §j -invariant subspace included in ker C
if and only if
M=EKg (5.4)

and F, is a non-singular common right factor of N and D,, with D,=E,F,.

Proof
Let M be an 8p -invariant subspace. Then D,=FE,F, and M=E,Kp,.
If M<kerC and feM, i.e. f=E,g with geKy then
C/{=(NDy™" Eyg)_, = (NFf'l 9)1=0

Actually more is true. Since Sy Kp <K we have for f=E,g, geKp,
that
0=(ND,' E\Sp? g)1=(ND,™" Eyrp, Ng)_,
=(NFy 1 E; 7 B\ Fin _Fi7' Ng)_y=(N=_Fy™* Ng)_4
=(m_Nm_F,7' ¥g)_;=(n NF,7* Mg)_,=(NF, 7' g)_5
and this implies that #_NF,~1 g =0 for all geK .

On the other hand it is clear that for all geF', - F=[X] we have, with g=Fh
and he F™[A], that

w_ NF,lg=n_NF,' Fih=n_Nh=0
and as F™[A]=Ky @©F,Fm[}] it follows that
7 NF,71g=0 for all ge F™[A]
This implies that N F,~1.is a polynomial matrix, say &¥; and so
N=N,F, (5.5)

Conversely assume N=N,F, and D,=E,F, with F, non-trivial. Then
M=E, Ky, is an Sp -invariant subspace. Let feM, ie. f=E,g with geKp .
We show that feker C.

Cf=(NDf)y=(NF, B Byg) = (N F Fy1g) = (N.g)1=0

a8 N,g is a vector polynomial.
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Under the linear invertible map Y the A-invariant subspaces are mapped
onto the Y A Y-'-invariant subspaces in a bijective way. Under the feedback
group (4, B)-invariant subspaces are mapped into subspaces of the same
kind. Analogously this holds also for (4, B)-invariant subspaces in the kernel
of C under a larger group. This has been pointed out by Emre (1978).

Lemma 5.2

Let (4, B,C) be a system with a state space X, let Y : X—X be an
invertible map and let V<X be an (4, B)-invariant subspace included in
ker C. If (4, B, C) and V are defined by

C=CY-', A=Y(A+BK+HC)Y~, B=YB (5.6)
and
' V=YV (5.7)
then V is an (4, B)-invariant subspace in ker C.

The previous characterizations of (4, B)-invariant subspaces and invariant
subspaces in ker C yield the following.

Theorem 5.3

Let N(A)D(A)! be a right coprime factorization C(AI — 4)~'B. A subspace
M<Ky is an (4, B)-invariant subspace in ker C if and only if

M=T,,-(E,Kp,) (5.8)
where
DD, is a bicausal isomorphism (5.9)
D,=EF, (5.10)
and
N=N,F, (5.11)
Proof

By the previous lemma (A, B)-invariant subspaces included in ker C
correspond to 4-invariant subspaces included in ker C of a feedback equivalent
system. These arise, up to similarity, out of factorizations N(A)D,(A)~! with
(5.9) holding. Thus Ty ,-1(M) is an Sp -invariant subspace of K and it
lies in ker C, by Theorem 5.1, if and only if D, and N have a non-trivial
common right factor. Since D, is non-singular so must be F;.

The above theorem relates (A4, B)-invariant subspaces in ker C' to some
non-singular right factors of N in the coprime factorization ND-1of C(AI — 4)-'B
Not every mnon-singular right factor of N can give rise to such a subspace.
The permissible factors were characterized in Theorem 4.4 in terms of Wiener—
Hopf factorizations.

That not all right factors of N produce (A4, B)-invariant subspaces included
in ker C can be seen from the following example. Let

d(x) o
N =(n(2) 0), D(A)=( )
0 1



490 P. A. Furhmann and J. C. Willems

1o
m)=( )
0 f(N)

is a non-singular right factor of N for every feF[A] but it does not correspond
to such a subspace.

Theorem 5.3 is closely related to the notion of feedback irreducibility
(Morse 1976, Fuhrmann and Willems 1979). A strictly proper rational function
G(A) is feedback irreducible if its McMillan degree is minimal in the set of transfer
functions of systems feedback equivalent to a canonical realization of @. It is
an immediate corollary from Theorem 5.3 that a strictly proper rational
function G(2) is feedback irreducible if and only if in any canonical realization
of G there is no non-trivial (4, B)-invariant subspace in ker C. This actually
serves as the definition of feedback irreducibility in Morse (1976). For a
connection to Wiener—Hopf factorizations we refer to Fuhrmann and Willems
(1979).

Next we study the order relation among (A4, B)-mvana,nt subspaces in
ker C in terms of the right factors of N.

Then

Theorem 5.4

Let M,, M, be two (4, B)-invariant subspaces of K, which are contained
in ker C which are associated with the non-singular right factors F,, F,
respectively of N. Then M, <M, if and only if F, is a right factor of F,.

Proof

Assume F, is a right factor of F,, i.e. F,= HF, for some, necessarily non-
singular H. By_ Theorem 5.3 there exists E, such that D,=E,F,, DD, 'is a
bicausal isomorphism, and M, = TDD,“(EzKpl)- Let E,=FE,H then D,=E,F,.
Also from F,=HF, it follows that HK, < Ky, and hence that E, K, =
EHK < E,Ky, and from this, since M, =T, -1(E,K ) the inclusion follows.

Conversely assume M, <M, are two (4, B)-invariant subspaces in ker C.
In view of Lemma 4.1, M, and M, are compatible. Thus there exists D,,
with D.D;~! a bicausal isomorphism;, having the two factorizations D, =E,F, =
E,F, and E, Ky < E,Kp,. This implies that F,=HF, for some H. Since
M,, M, are in ker C necessa,rlly F,, F, are right factors of NV.

leen a rational transfer functlon G()) we were able to characterize the
(4, B)-invariant subspaces in ker C in terms of non-singular right factors of
the numerator polynomial in a right coprime factorization of G. Given a
left coprime factorization G =7T"-1U we expect, purely on grounds of symmetry
that the (4, B)-invariant subspaces in ker C of the system associated with this
factorization will be related to non-singular factors of U and this in fact turns
out to be true.

We will use freely results on feedback dualized to the case of the output
injection group. Thus if T and T, are such that 7,7 T is a bicausal iso-
morphism then the systems associated with the factorlzatlons T1U and
T,7* U are output injective.

The following lemma will be used in the study of (4, B)-invariant subspaces
in ker C.
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Lemma 5.5

If T, T\eFrxr[A] and T,7' T is a bicausal isomorphism then K, and K,
contain the same elements, that is, they are equal as sets. ‘
Assume I'=T,7 T is a bicausal isomorphism.

Proof
Let feK , then mpf=f. Consider

apf=rpmpf=Tm Ty Ta T =Tn Un_TY=TI'r_T
=TT, 2 Tn_TY=nypf=f
i.e. feK,, and the result follows by symmetry.
Next we pass on to the characterization of (4, B)-invariant subspaces in

ker C in terms of the left coprime factorization @=T-1U. The triple (4, B, C)
is the one associated with this factorization of G.

Theorem 5.6

Let G@=T-1U be a left coprime factorization with T'e F7XP[A] non-singular
and UeFPxm[}]. . Let

U=E,U, (5.12)

be a factorization of U with E,e FPXP[A] non-singular and U,e FPX®[A]. Then
\ V defined by

V=E,Ky, (5.13)
is an (4, B)-invariant subspace in ker C.

Proof

First we show that V defined by (5.13) is (4, B)-invariant. Note that if
heX\"LFm[[A71]] satisfies U,he FP[A] then also U,(S_h)e FP[A] where S_ is the
shift in A-1Fm[[A-1]] defined by (2.9). Indeed for heA-'Fm[[A-1]] we have

A= (my + 7 )Ab) =7 (Ah)+7_(Ah) =€+ S_h
with £¢=h_,. Hence
UI(S_h) =U(M)-U,é=AUh—U,£cF7P[A]
Next we compute S,f for feE Ky;,. Thus f=E,Uh with U heK;,.

Spf=mpAf = Tm_T-1f = Tr_T-AE,U k= Tr_T-U(+S_h)

= Tr_T-1U¢ + Tr_T-US_h=Ut + US_h=U¢ + E,U,(S_h)
Now UteB={Un|ncFm} and U,(S_h)eK, so E\U\(S_k)eE,K,. This shows
that V is (4, B)-invariant. '

‘That E,Ky, is in ker C follows from the following. Let féElKU‘ be
represented as before, i.e. f=E,U;h. Then '

Cf=(T7)y=(T2E,Uh)_y=(T2Uh)_,=0

a8 both- 7-1U and % are sfrictly proper and so the coefficient of A-! in the
formal power series of T'-1U# is necessarily zero.
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Corollary 5.7

K is an (A, B)-invariant subspace in ker C.

Note that the condition in Theorem 5.7 is sufficient. We will see later that
it is not necessary, i.e. not every (A, B)-invariant subspace in ker C has the
form (5.13).

A complete characterization is given by the following. The proof is close
to an argument used by Emre and Hautus (1978).

Theorem 5.8
Let G=T-1U be as in Theorem 5.6. A necessary and sufficient condition
for a subspace V<K, to be an (4, B)-invariant subspace in ker C is that V
_has the representation
V=UKpg, (5.14)
where
U=U,E, (5.15)

is a factorization of U with E,eFm*m[A] non-singular and UgeFPxm[}].

Proof

The sufficiency of the condition follows the lines of the proof of Theorem 5.6.

To prove necessity assume V<K, is a k-dimensional (4, B)-invariant
subspace in ker C. For some state feedback map K we have (A + BK)V<cV
and we let A =(4+BK)|V. Without loss of generality we may assume A4
to act in F* . K,;_;is a model for 4 and the elements of K,;_3 coincide with
all vectors in F%.

Let X : K,,_,— K, be the invertible map for which

XA=(A+BEK)X (5.16)

By the linearity of X it follows that there exists a polynomial matrix
¥ in FPX¥[A] such that

(XEY(A) =T (A for every EeF* (5.17)
Since

(Sz/)(A)=F(X) = T'( Ay,

we have
W(N)A¢=XA¢=(A+BK)XE=NF(N)E—T(Nm;— U(Nm,

where 7,€F? and 7,6 F™ depend linearly on £&. Therefore there exist constant
matrices Ee Frxk and FeFmxk for which

Y(NA =2 (N)-TNE-UNF , (5.18)
or
YA - A)=T(NE+UNF
and equivalently .
YN =TNEQL— A1+ UQ)F( - A)? (5.19)
Since V cker C we must have for all (e F* that (T-1¥¢)_,=0. Hence

(B — A7) +(TNUNFAI - 4)72£) 4 =0
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Since T-1U and F(M — A4)-1 are both strictly proper the second term
vanishes identically. Thus E(Al — 4)7'£=0 for all { and so necessarily £ =0.
Thus (5.19) reduces to

Y(A)=UXF(X - 4)! , (5.20)

We claim that (4, F) is an observable pair, or equivalently that F and
(M - 4) are right coprime. Otherwise for some ¢#0 we would have
F(M — A)'£=0 and in that case (5.20) implies that W(A){ =0 contrary to the
assumption that X is injective. Let E,* V, be a left coprime factorization of
F(M — 4A)7? then

F(A) =T EX)Vo(}) (5.21)
and so E, is necessary a right factor of U, i.e.
U=U,E, (5.22)
and
W(A)=Uy(A) Vo(A) (5.23)

Now F(A — 4)~! is a state-to-output transfer function. Dualizing results
of Hautus and Heyman (1978) it follows that the columns of V; span K, in
fact are a basis of K5, Combining this with (5.23) and the fact that
V={¥(N¢|écF*} it follows that V =U Ky, and this completes the proof.

Corollary 5.9 [2]
K; is the maximal (A, B)-invariant subspace in ker C.

Proof

From the preceding theorem and Lemma 2.11 it follows that every (4, B)-
invariant subspace of K, which is contained in ker C is contained in K.
But K, is itself such a subspace, so maximality follows.

One might be tempted to speculate that the converse to Theorem is also
true, i.e. that every (A4, B)-invariant subspace of K, which is contained in
ker C has a representation of the form E K . This is false as the following
counterexample shows.

Let U(A)=(1, A3%) and T'(}) be any scalar polynomial of degree >4. Clearly
Ky is the set of all polynomial of degree <2. Since the g.c.d. of 1 and A% is
1 there is no non-trivial factorization of the form U =E,U, with E, non-
singular. However there exist other (A4, B)-invariant subspaces in ker C.
Consider the following factorization of (I, A3).

1 0
(1, A3 =(1, A?) (

]

The (4, B)-invariant subspaces of K, which are contained in ker C are
ordered by inclusion and this can be immediately related to some division
relations as in Theorem 5.4.

) = UO(A)EO(A)
0 A
then

aEF} and UOKEO={OLA21&EF}
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Theorem 5.10

Let V,, V, be two (4, B)-invariant subspaces of K conta,med in ker C
and assume ,
V,;=UKg, i=1,2 (5.24)

with E,eFmxm[A] non-singular. .Then V,< V¥, if and only if E, is a right
factor of E,, i.e. if and only if E,=HE,.

Proof

1f Ez—HE then U=U,E,=U, HE =U,E,. As E,| is non- smgular then
U,=U,H. From the factOrlzatlon E,=HE, it follows by Theorem 2.9 or
Lemma 2.11, that HK; < K, and hence that

U\ Kg,=U,HKg cU,Kg,

which proves V <V,

Conversely assume V,c V, are (4, B)-invariant subspaces of K, contained
in ker C. Thus if /eVl, f=UEh=U,Eh. Since EheKgp, and E, are
non-smgu]ar it follows that heLE CLE From Theorem 2.9 (ii) it follows
that E, is a right factor of Z,.
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