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ABSTRACT 

We survey the theory of Bezoutians with a special emphasis on its relation to 
system theoretic problems. Some instances are the connections with realization 
theory, in particular signature symmetric realizations, the Cauchy index, stability, and 
the characterization of output feedback invariants. We describe canonical forms and 
invariants for the action of static output feedback on scalar linear systems of McMillan 
degree n. Previous results on this subject are obtained in a new and unified way, by 
making use of only a few elementary properties of Bezout matrices. As new results we 
obtain a minimal complete set of 2n - 2 independent invariants, an explicit example 
of a continuous canonical form for the case of odd M&f&n degree, and finally a 

canonical form which induces a cell decomposition of the quotient spade for output 
feedback. 

1. INTRODUCTION 

The Bezoutian is a rather special quadratic form which is defined for an 
arbitrary pair of polynomials. It was introduced in the middle of the 19th 
century and appears in the context of the theory of equations as a basic tool 
in the study of location of zeros for real and complex polynomials, in stability 
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theory as well as in classical elimination theory. The naming of Bezoutians 
goes back to Sylvester (1853) and it has been used to great advantage among 
others by Sylvester, by Cayley, and in a very powerful way by Hermite 
(1856). In spite of the fact that it is an extremely useful tool, the Bezoutian is 
hardly mentioned any more in general algebra texts, due to the trend in 
mathematics towards more abstraction. Van der Waerden (1931), Lang 
(1965), MacLane and Birkhoff (1967), and Hoffman and Kunze (1971) are all 
cases in point. In fact, even Gantmacher’s classic treatise (1959) avoids 
the use of Bezoutians, for no obvious reason. Thus the study and use of 
Bezoutians has been relegated to special topic areas like the study of Toeplitz 
and Hankel matrix inversion, as in Heinig and Rost (1984), or to applied areas 
and in particular the area of system theory, especially stability theory. Some 
other important uses are in the analysis of determinantal representations of 
rational curves. For this connection we refer to the important paper by N. 
Kravitsky (1980) and to the work of Vinnikov (1986). 

One reason for the decline of the Bezoutian in algebra texts may be the 
general decline of matrix theoretic methods and the quest for basis free 
statements. With this in mind we will stress the fact, proved in Fuhrmann 
(1981), that the Bezoutian is a matrix representation of a special module 
homomorphism over the ring of polynomials. Thus the study of the Bezoutian 
and its properties can be lifted out of its formal computational context and 
done in a mostly basis free way. 

Our purpose in this paper is to restore the Bezoutian to a central place in 
both linear algebra and system theory by stressing its various applications. 
The uses of the Bezoutian in the system theoretic context are multifold. As 
the nonsingularity of the Bezoutian of two scalar polynomials is a criterion for 
coprimeness, the form makes direct contact with realization theory through 
controllability and observability tests. When we turn to questions concerning 
the Cauchy index and the signature of Hankel forms associated with rational 
functions, the associated Bezoutian gives equivalent results. However, the 
Bezoutian is much more amenable to computations. The reason for this is 
that the Bezoutian is linear in its arguments. This, coupled with the Eu- 
clidean algorithm, opens up the possibility of recursive computations, clarify- 
ing the relation to continued fractions and the establishing of recursive 
procedures for Hankel and Toeplitz matrix inversions. Maybe the most 
widely used classical area of application of the Bezoutian is the stability 
theory of an nth order homogeneous linear differential equation. Moreover 
the Bezoutian is related to geometric concepts as (A, B) invariant subspaces. 
With this we have not exhausted its uses in system theory. 

Of particular interest to control theorists is a remarkable property of the 
Bezoutian, one which we will emphasize and exploit in this paper: It gives a 
complete set of invariants for the action of the static output feedback group 
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on scalar transfer functions. This basic fact is our starting point, from which 
we will derive and extend, in a unified way, previous results on the output 
feedback problem. We will restrict ourselves completely to the simplest 
possible case, namely to the action of the full output feedback group 

PM aP(4 

q(z)- 44 + YP(4 ’ 
a f 0, YEF, 

on the space Rat(n) of scalar linear systems g(z) = p( z)/q( z) of McMillan 
degree n. 

A complete set of invariants for the restricted output feedback action 

&I * 
b+) 

1-r Ybw ’ 
g E Rat(n), 

was first given by Yannakoudakis (1981). In Bymes and Crouch (1985) the 
authors give, based on classical algebraic geometry, necessary and sufficient 
conditions for equivalence under the full output feedback group. They also 
prove, over R, that there exists a continuous canonical form for output 
feedback if and only if the McMillan degree n is odd. However, no example 
of such a canonical form is given. 

All these results are shown only for the scalar case. The multivariable case 
is more complicated and seems to require at least certain genericity assump- 
tions. Hinrichsen and Pratzel-Wolters (1984) have constructed a quasicanoni- 
cal form for output feedback of multivariable systems, which defines an 
honest canonical form on a certain generic subclass of linear systems. 
Similarly, Bymes and Helton (1986) describe a different canonical form for 
output feedback, which is based on the matrix cross ratio and which is also 
defined only for a certain generic subclass of systems. 

The paper is organized as follows. In Section 2 we briefly survey the basic 
facts concerning polynomial models. Section 3 reviews the basic facts about 
Bezoutians, stressing the polynomial model point of view. In Section 5 we 
study representation theorems for Bezoutians, relate them to Hankel matri- 
ces, and derive some classic connections between the two and their minors. 
The Kravitsky (1980) identity is an easy corollary of these representations. A 
connection with the Hurwitz determinants is also established. 

In Section 8 we prove Heinig and Rost’s (1984) result, Theorem 8.1, and 
obtain as corollaries several basic results of Yannakoudakis and of Bymes and 
Crouch. A minimal set of 2n - 2 complete (projective) invariants for output 
feedback is given. In the last section we construct an explicit example of a 
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continuous canonical form for output feedback for the case of odd McMillan 
degree. Finally we describe a different canonical form, using continued 
fraction representations. This canonical form has some nice geometric prop- 
erties, e.g., it leads to a cell decomposition of the quotient space of Rat(n) 
under the output feedback action. 

With these applications towards the output feedback problem the poten- 
tial of the Bezoutian has by no means been exhausted. Some topics where the 
Bezoutian point of view can be expected to be fruitful are: 

(1) The output feedback problem in the multivariable case. 
(2) The relation of the Bezoutians to Lijwner matrices and the Cauchy 

interpolation problem. 
(3) The classification of binary forms. 
(4) The analysis of trace forms in algebra and number theory. 

We wish to add that the classical Bezoutian has been extended to the 
multivariable setting by Anderson and Jury (1976). In this connection we 
point out the following references: Fuhrmann (1983), Wimmer (1989a, 
1989b), Wimmer and Pt&k (1985), and Lerer and Tismenetsky (1982). 

2. POLYNOMIAL MODELS 

Throughout the appear we will denote by F an arbitrary commutative 
field. It might be identified later with the real number field R. By F[ Z] we 
denote the ring of polynomials over F, by F((z-‘)) the set of truncated 
Laurent series in z-i, and by F[[z-‘I] and z-‘F[[z-‘I] the set of all formal 
power series in Z- ’ and the set of those power series with vanishing constant 
term, respectively. Let 7r+ and V_ be the projections of F(( z-l)) onto F[ z] 
and z-~F[[z-‘]] respectively. Since F((z-‘)) = F[z]@z-‘F[[z-‘I], they are 
complementary projections. Also, z -‘F[[z-‘I] is isomorphic to F((z-‘))/ 
F [z], which is an F[z]-module with the module action given by 

z.h=S_h=r_zh. (1) 

Similarly we define 

S+f=zf for f~F[z]. (2) 

Given a manic polynomial Q of degree n, we define a projection V~ in F[z] 
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by 

77J= qn_q-‘f for fEF[z]. 

We define the polynomial model associated with q as the space 

1043 

(3) 

X,=Imrq 

endowed with the module structure induced 
through 

(4) 

by the shift map defined 

Sqf =rqS+f for fEF[z], (5) 

and the rational made1 as the space 

X4= Immq, (6) 

where rrq is the projection in z-‘F[[ z-r]] defined by 

rqh = n-q-‘r+qh for hEz-lF[[zP1]]. (7) 

Xq is a submodule of z- ‘F[[ z- ‘I] with the module structure given by 

Sqh=S_h for h E Xq. (8) 

The two models X, and Xq associated with the polynomial q are isomorphic, 
the isomorphism being given by the map pq: X4 + X, defined by 

pqh = qh for hEXQ, 

i.e. we have ~$9 = Sqpq. 
A map 2 in X, commutes with S, if and only if Z = p(S,) for some 

(9) 

polynomial p E F[ z] and p(S,) is invertible if and only if p and q are 
coprime. We define a pairing of elements of F((z+‘)) as follows: for 
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g(z)= 5 gj”j 
j= -m 

let 

LifTgIl = f f-j-lgj' (10) 

j= -_03 

Clearly, since both series are truncated, the sum in (10) is well defined. In 
terms of this pairing we can make the following identification; see Fuhrmann 
(1981). The dual of F[z] as a linear space is Z-‘F[[K’]]. Now, given a 
nonzero polynomial q the module X, is isomorphic to F[ z]/qF[ z]. If we 
define, for a subset A4 of F((z-‘)), M i by 

Ml= (gEF((d-i))l[f,g] =Oforall ~-EM], (11) 

then in particular F[ z] L = F[z] and (qF[.z])l =Xq. Since, in general, 
(X/M)* = ML, we have 

XT = (F[z]/~F[z])*= [@[z]] ’ =x4. (12) 

But in turn we have XQ = X,, and so X: can be identified with X,. This can 
be made more concrete through the use of bilinear form 

(f,g)= [4Pf&l. (13) 

Relative to this bilinear form we have the important relation 

S$ = s,, 04) 

so that Sq is self-adjoint. 
Let X be a finite dimensional vector space over the field F, and let X* 

be its dual space under the pairing ( , ). Let { e,, . . . , e, } be a basis for X. 
Then the set of vectors { fi, . . . , f, } in X* is called the dual basis if 

(ei, _fj> = 6ij3 l< i, j < n. (15) 
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Let X, be the polynomial model associated with the polynomial 9(z) = 
x” + 9n_ izn-1 + . . . + 9a. The elements of X, are all polynomials of degree 
< n - 1. We consider the following very natural bases in X,. The subset of 
X, given by B,, = { fi,. . . , f,}, where 

A(z) = zipl, i=l ,..., n, 06) 

is a basis for X,. We will refer to this as the standard basis. 
Given the polynomial 9 as above, we define 

ei(a) = 7r+2-‘9=9i+ 9i+1Z + ... + an, i=l,...,n. 07) 

and call the set B,, = { ei,. . . , e,,} is the control basis of X,. The important 
fact about this pair of bases is that relative to the bilinear form ( , ) of 
Equation (13) the standard and control bases are dual to each other. In 
particular since S,* = S,, we have p(S,)* = p(S,*) = p(S,), and so p(S,) is a 
self-adjoint operator in the indefinite metric ( , ). Thus the matrix represen- 
tation of p(S,) relative to any dual pair of bases is symmetric. 

The following theorem summarizes the most important properties of 
linear maps that commute with S,. 

THEOREM 2.1. Let 9 be a manic polynomial of degree n, and let 
S,: X, + X, be defined by Equation (5). Then: 

(i) The map Sq is cyclic. 
(ii) Let 2,: X, + X Q be any map commuting with S,, i.e. any map 

satisfying 

zsq = sqz. (18) 

Then there exists a unique polynomial of degree < n such that 

z = P(S,>. (19) 

(iii) Let T be the g.c.d. of p and 9, i.e. p = rpI and 9 = ~9, with p,, 9r 
coprime. Then 

Kerp(S,> = PA, (20) 
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Im p( Sq) = rXql. (21) 

(iv) The map p(S,) is invertible if and only if p and q are coprime. 
(v) Zf p and q are coprim, let a, b E F [ z] be solutions of the Bemut 

equation 

p(zb(z)+ q(z)b(z) = 1. (22) 

Then the inverse of p(S,) is a(S,). The polynomial a is uniquely determined 
provided we require that the condition deg a < deg q be satisfied. 

Proof. We prove only (v). From (22) it follows that 

P(SJa(S,) + b(S,>q(S,) = Z, (23) 

and as q(S,) = 0, we have 

p(S,)a(S,) =I. (24 

Note that the polynomials a and b solving Equation (22) can be found using 
the Euclidean algorithm. We will return to this later in Section 9. n 

We note, for later use, that 

(0 **. 0 -qO \ 

0 cq,= [s,];:= l 1” , yql . * 

\ * I i . - qn-1 

and 

IO 1 \ 

cq= [sq]Z= ! 1 ’ 

-90 *.* - 4n-1 I 

(25) 

(26) 

i.e., we obtain the companion matrices as matrix representations. 
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Next we specialize to the case that the polynomial 9 has n simple roots. 
Thus 

and Ai # X j. Now, as (S,f)( z) = zf(z) - pq(z) for some p, it follows that 1y 
is an eigenvalue of S,, and f an eigenfunction, if and only if 9(a) = 0 and 
f(z) = pq(z)/(z - a), i.e., OL is equal to one of the Xi. 

Clearly {~i(z)=9(z)/(z-Xi)~i=1,...,n} is a set of n linearly inde- 
pendent functions in X, and hence constitutes a basis. We call this the 
spectral basis and denote it by Bsp. Obviously 

(27) 

Finally we introduce the interpolation basis Bi, in X,. Let ri,. . . , r,, E X, be 
defined by the requirement 

Ti(Xj) = a,,, i, j = 1 >..., 72. (28) 

A simple calculation leads to 

Thus B, = { rl, . . . , v,, }. 
Now for an arbitrary polynomial f in X, we have 

(f~Pj)=[9-1~~Pj]=[~~9-1Pj]=[f,(~-Xj)-1]=f(Aj). (29) 

In particular 

(7ri, pi) = 7ri(Xj) = sij. (30) 

So Bi, is in fact the dual basis of Bsp. 
The usage of the term interpolation is justified by the fact that f(z) = 

Zy=i,~~~~(i(z) is the unique polynomial solution, of degree < n - 1, of the 
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interpolation problem 

f(&> = ci, i=l,...,n. 

This is just the Lagrange interpolation problem. 
Note that for every f in X, we have the expansion 

f(‘) = IL f(xi>Ti(z) 

i=l 

and in particular 

zk= k x;q(z). 
i=l 

We define the Van der Monde matrix V=V(X,,...,X,) by 

’ 1 . . . 1 \ 
A, *** A, 

W I,..., A,) = : . 

A?;-’ . . . 
\ 

p-1 
, 

Now Equation (33) can be written as 

[z]$=V 

(31) 

(32) 

(33) 

(35) 

and so, by duality, 

[z];=v. (36) 

Incidentally the representation (36) of V( X i, . . . , A ,) is another proof of 
the nonsingularity of the Van der Monde matrix. 

An easy corollary is the well-known diagonalization, by similarity, of the 
companion matrices. 

COROLLARY 2.1. Let q be as above, and Cq the companion matrix of 

(26). Then for V = V( A,, . . . , A,) we have 

v-q/v = A (37) 

and A = diag(h, ,..., A,). 
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Proof. From the equality S,I = IS, we get 

(38) 

or 

CqV=VA. . (39) 

3. BEZOUTIANS 

A quadratic form is associated with any symmetric matrix. We will focus 
now on quadratic forms induced by polynomials and rational functions. 
Specifically we will focus on Bezout and Hankel forms because of their 
connection to system theoretic problems like stability and symmetric realiza- 
tion theory. 

Let p(z) = C~,ap,z’ and 9(z) = C~c09izi be two polynomials, and let z 
and w be two (generally noncommuting) variables. Then 

p(z)q(w) - q(z)p(w) = i 2 piqj(ziwj- zjwi) 
i=CJ j=O 

= C (pi9j - 4ipj)(2wj- zjd). (40) 
O<i<j<n 

Observe now that 

ziwj_ zjwi= i~plz’tv(w _ z)wj-v-l. 
v=o 

Thus Equation (40) can be rewritten as 

j-i-l 

PCz)9Cw) - 9tz)PCw) = C (Pi9j - Pj9i) C zi+y(w - z)wj-y-’ 
O<i< j<n v=o 

(41) 

or 

9(z)p(w) - p(z)q(w) = 5 i bijz”(z - w)wj-l. (42) 
i-l j=l 
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The last equality is obtained by changing the order of summation and 
properly defining the coefficients bi j. 

DEFINITION 3.1. The matrix ( bij) defined by Equation (42) is called the 
Bezout form associated with the polynomials q and p, or just the Bezoutian 
of q and p, and is denoted by B(q, p). If g = p/q is the unique irreducible 
representation of a rational function g, with q manic, then we will write 
B(g) for B(q, p). B(g) will be called the Bezoutian of g. 

For a study of the functorial properties of the map g - B(g) we refer to 
Helmke (1987). It has been noted by Kravitsky that Equation (42) holds even 
when z and w are a pair of noncommuting variables. This observation is 
extremely useful in the derivation of representation theorems for Bezoutians. 

Note that B(q, p) defines a bilinear form on F” by 

B(q, P)(t, 17) = i i bij5iVj for [,~EF”. 
i=l j=l 

No distinction will be made between the matrix and the bilinear form. 
The following theorem summarizes the elementary properties of the 

Bezoutian. 

THEOREM 3.1. Let q, p E F [ z] with max(deg q, deg p) < n. Then: 

(i) B(q, p) is a symmetric matrix. 
(ii) B(q, p) is linear in q and p. 

(iii) B(P, q) = - B(q, P). 

The following theorem is of central importance in that it reduces the 
study of Bezoutians to that of intertwining maps of the form p(S,). These are 
easier to handle and yield information on Bezoutians. Moreover, since the 
homomorphisms of polynomial models generalize to the multivariable case, 
we can extend the theory of Bezoutians to that context. Thus the analysis of 
the Bezoutian is reduced to the study of the map p( S,), which is much easier. 

THEOREM 3.2. Let p, q E F[ z], with deg p < deg q. Then the Bezoutian 
B = B(q, 6) of q and p satisfies 

B(q, p) = [ P(S,)]:~. (43) 

Proof. Because of its importance we give two different proofs of the 
theorem. Our starting point is Equation (42). We note that in this form the 



BEZOUTIANS 1051 

equality holds for any pair of noncommuting variables. In particular we will 
choose for z and w linear maps. 

We assume now that deg p < deg 9 = n and choose a manic T E F[ z] 
such that deg r = deg 9 and r and 9 are coprime. This is always possible; in 
fact T(Z) = 9(z) + 1 is such a polynomial. Furthermore let us substitute in 
Equation (42) z = S, and w = S,. Obviously the polynomial models X, and 
X, are equal as sets, though they carry different module structures. Since 
9(S,) = 0, it follows that 

9(S,)p(SJ = $ i bijSjf’(S, - s$-1. (44) 
i-1 j-1 

Next we note that for every polynomial f of degree < n - 2 we have 

whereas 

n-1 
+n-l= TqZ” = Zn- 9(4 = - c 9$‘. 

i=O 

Therefore we have 

Note that, since both 9 and T are manic, 9 - r is of 
follows that we have the following matrix representation: 

(45) 

degree < n - 1. It 

Apply the map 9(S) to the polynomial 1 to obtain 

q(S,)l= 7&9.1= 9 - r. 
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Given two polynomials b, c E X, we define the rank one operator b@ E by 

(b@)f= (f,c)b. (46) 

Note that in terms of coordinates relative to the dual pair of bases we can 
write 

(f,c) = [E]“‘[f]“. (47) 

Hence from Equation (44) it follows that, given an arbitrary f E X,, 

But as 

sf1(9(s,)1c3i)s~-‘f= (~,i-~f,i)s;-1~(s,)i 

= (f, s~-11)9(s,)s~-‘1 

=(f,z j~l)q(s,)z’-1, 

we get, using the fact that 9(S,.) is invertible, the equality 

P(S,)f = i f: bij(f, zj-1),“-1. 
i=l j-1 

Hence 

or 

where 

(48) 

(49) 

(50) 
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is the matrix whose i, j entry is 1 and all other entries zero. Thus the 
representation (43) follows. 

For another proof note that 

if j<k, 

if j=k, (51) 
if j>k. 

So from Equation (42) it follows that 

9(+7+w -kp(W)-p(Z)i7+U;-kq(W)lw_r= i bikZip13 (52) 
i=l 

so that, with {e,, . . . , en} the control basis of X, and pk defined by 

Pkb) = r+zpkP(+ 

we have 

n 

9(z)Pk(z) - ?dz)ek(z) = c bikti-l. 

(53) 

(54) 
i=l 

Applying the projection 7rq, we obtain 

n 

rqpek=p(S,)ek= 1 bikzipl, 
i=l 

(55) 

which, from the definition of a matrix representation, completes the proof. w 

COROLLARY 3.1. Let p, 9 E F [ z], with deg p < deg 9. Then the lust row 
and column of the Bezoutian B(9, p) consist of the coefficients of p. 

Proof. By Equation (55) and the fact that the last element of the control 
basis satisfies e,,(z) = 1, we have 

t bi,,zi-’ 
n-1 

= (?r,pe,)(z) = (rqP)(z) = P(z) = C Pizi> (56) 
i=l i=O 
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i.e. 

bin = pi-17 i=l,...,n. (57) 

The statement for rows follows from the symmetry of the Bezoutian. W 

The next theorem presents some well-known facts concerning Bezoutians. 
The interest in the polynomial model approach is the characterization of the 
Bezoutian as a matrix representation of an intertwining map. This leads to a 
conceptual theory of Bezoutians, in contrast to the purely computational 
approach that has been prevalent in their study for a long time. 

THEOREM 3.3. Giuen two polynomials p, q E F[z], then 

(i) B(q, p) is inuertible if and only if q and p are coprime; 
(ii) dim(Ker B(q, p)) is equal to the degree of the g.c.d. of q and p. 

Proof. Part (i) follows from Theorem 2.l(iv) and Theorem 3.2. Similarly 
part (ii) follows from Theorem 2.1(m). n 

As an immediate consequence we derive some well-known results con- 
cerning Bezoutians. Previous proofs were all computational. 

COROLLARY 3.2. Letp,qEF[z], with degp<degq. Assumephusa 
factorization p = p,p,. Let q(z) = Cy=‘=oqizi be monk, i.e. q,, = 1. Let C, be 
the companion matrix of q, and let K be the matrix 

I 
41 . 

K= : 

qn-1 1 
\ 1 

Then 

(58) 

. . . 
qn-1 1 

1 
. . 

. . 

I 

B(q, w,) = B(qt pl,p&) = dC,)Bh r-d (59) 

B(P4) = KP(d,) = P(C,)K 

B(p> q)cq = C,B(p,d. 

(60) 

(61) 
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Note that the matrix K in Equation (58) satisfies K = B(q, 1) and is both 
a Bezoutian and a Hankel matrix. 

Proof. Note that for the standard and control bases of X, we have 

(62) 

(59): This follows from the equality 

P(KJ = P,PJP2(%) (63) 

and the fact that 

Bk PIP,) = [(P,P,)(S,)]: = [P&JP&Jl: 

= [ P&)]::[P2@7)1:50* 

(60): This follows from (59) for the trivial factorization p = p. 1. 
(61): From the commutativity of S, and p(S,) it follows that 

[P(S,)l:[S,I: = M~:[pw1:~ 

We note that 

(64) 

(65) 

The representation (60) for the Bezoutian is sometimes referred to as the 
Burnett factorization. 

The next result, concerning diagonalization of Bezoutians by congruence 
transformations, is apparently well known. It is used in Datta (1978). In 
Heinig and Rost (1984) it is credited to Lander. In this connection we refer 
also to Furhmann and Datta (1987). 

THEOREM 3.4. Let q(z) be a manic nth degree polynomial having n 
simple zeros X 1, . . . , A,, and let p be a polynomial of degree < n. Then the 
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Bezoutian B( q, p) satisfies the following identity: 

pB(q,p)V= R, 637) 

where R is the diagonal matrix diag( rr, . . . , T,,) and 

ri = P(‘i)qi(‘i) = PCxi)q’txi)’ (68) 

Proof. The trivial operator identity 

IP(S,)Z = P(S,) (69) 

implies the matrix equality 

Pl~[ P(xJ]~om~; = [ P(SJ]‘s”,* 

As S,q, = Xiqi, it follows that 

P(sq)Pi= Ptxi)Pi = P(xi)4i(xi)ri* 

No~q,(h,)=lI~,~(X~-X~),but q’(z)=ErZrqi(z),andhence 

q’(&) = JJ (xi-xi) = q&l,). 
j#i 

(70) 

(71) 

(72) 

Thus 

and the result follows. 

R = [P(%)]:) (73) 

n 

4. REALIZATION 

Let g(z) be a (not necessarily proper) rational function. We say that a 
quadruple of linear maps (E, A, B, C) is a realization of g if 

G(z) = C(zE - A) -lB; (74) 

it is a minimal realization if E and A are of minimal possible dimension. 
A pencil .zE - A is called nonsingular if E and A are square matrices 

and det( 2%: - A) is not identically zero. 
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Two pencils .zE, - A, and zE, - A, are called strictly equivalent if there 
exist nonsingular matrices P and R such that 

P( zE, - A,)R = ZE, - A,. (75) 

Clearly this is an equivalence relation. If E, is nonsingular, so is E,, and in 
that case PE,(zZ - E,‘A,)RE,‘= zZ - A,E,‘, so (PE,)-‘A = RE,‘. Let 
PE, = S; then 

S(zZ - E,‘A,)SS’= zZ - A,E,‘. (76) 

It follows that EL’ and EL’ are similar. 
The McMillan degree of g, denoted by 6(g), is defined as the dimension 

of a minimal realization. 

THEOREM 4.1. Let g be rational and g = p/q with p and q coprime. 
Then 6( g ) = rank B( q, p). 

REMARK. The advantage of using the Bezoutian is that it does not 
require the properness of g. 

Proof. Let g = p/q with p and q coprime. In that case rank B(q, p) = 
n. Let p = aq + r with deg r < deg rq. So p/q = a + r/q with r/q strictly 
proper, a a polynomial, and clearly T and q coprime. Taking minimal 
realizations of a and r/q of degrees m and n - m, respectively, we have 

a(z) = &(I - zA,) -lb, (77) 

and 

w 
g_(z) = - 

q(z) 
=+Z-A)-‘b. 

Putting the two realizations together, we have 

g(z)=(” Em) 

=+I-A)-‘b+&(Z-zA,)-‘b, 

=g_ +g+. 

(78) 

(79) 

So S(g) Q n = rank B(q, P>. 
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Conversely, assume 6(g) = n. Then g(z) = c((zE - A))‘b with E, A 
n X n matrices. Let g = p/q, with p and 9 coprime. We may, without loss 
of generality, assume the equality (79) holds. Let A, be m X m; then A is 
(n - m)X(n - m), and g(z) = a(z)+ r(z)/q(z) with degq = n - m. Thus 
gg = 9a + r = p, and hence g = p/q and p, 9 are coprime. From this it 
follows that rank B(9, p) = n. I 

5. REPRESENTATION OF BEZOUTIANS 

The relation (42) leads easily to some interesting representation formulas 
for the Bezoutian. These formulas were obtained by Kravitsky (1980) and 
Ptgk (1984). They are also implicit in Trench (1965). In this connection see 
also Fuhrmann (1986). 

For a polynomial a of degree n we define the reverse polynomial a# by 

a+> = a(z-‘)z”. (86) 

THEOREM 5.1. Let p(z) = X~+,pizi and q(z) = C~~,,z,z' be polynmni- 
als of degree n. Then the Bemtian has the following representations: 

B(~,P)=[P(~)~#(S)-~(S")P'(S)~J 

=J[p(S)9'(~)-9(S)p#(s")l 

= - J[PW)9(S) - 9WP(S)l 

= - [ Pyf3)9@ - 9WP(s”)l J. 

Proof. We define the n x n shift matrix S by 

s= 

0 1 0 .*a 0 0 
. 1 . . . . 0 0 

** * * . . . 

i 6 
. 1 

0.. . . 

(81) 

(82) 
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and the n x n transposition matrix J by 

0 1 
1 0 
. . 

. 0 

. 0 

Note also that for an arbitrary polynomial a we have 

Ju(S)J= a(S). (84 

From Equation (42) we easily obtain 

P(Z)9#(4 - 9(W(w) = P(49(fo~n- 9(4PW1)~” 

= { P(49W1) - 9(4P(~-‘)} W” 

= i t bzjZi-yZ _ wpl)w-j+lWn 
i=l j-1 

= k i bij21-l(zw-l)cj. (85) 
i=l j=l 

In this identity we substitute now z = $ and w = S. Thus we get for the 
central term 

and 

p-1(& _ z)Sn-j 

(86) 

(87) 

is the matrix whose only nonzero term is - 1 in the i, n - j position. This 
implies the identity 

B(9, P) = { P(Q9V) - 9(W(S)}J. 

The other identities are similarly derived. 

(88) 

W 
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From the representation (88) of the Bezoutian we obtain, by expanding 
the matrices, the Gohberg-Semencul (1972) formula 

= Ii p,_, PO I ... **. PO 0 il: 9, 91 . . . -* . . 9n 0 

l ... 90 

- I : 

0 

I 

P, 

. 

Y I -.* 
9n-1 ... 9o P”Vl 

\ 0 pn-l O’l . (89) 

0 

Given two polynomials p and 9 of degree n, we let their Sylvester 
resultant Res(p, 9) be defined by 

Res(p, 9) = 
I PO .*. 17,-l 

Y ! 
PO 

90 ... 9n-1 

I 90 

Pfl 
. . 

Pl ... P, 
9, 
. * 

91 ... 9, 

\ 

(90) 

, 

It is well known that the resultant Res(p, 9) is nonsingular if and only if p 
and 9 are coprime. Equation (90) can be rewritten as the 2 X 2 block matrix 

(91) 

where the reverse polynomials p# and 98 are defined in Equation (80). 
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Based on the preceding, Kravitsky’s result can be stated as 

THEOREM 5.2. Let p(z) = ~~~Opiz” and q(z) = E~+qiz be polynomi- 

als of degree n. Then 

Res(p,q)( “J i)Res(p,q)= [ _RFp,q) B(pd9)). (92) 

Proof. By expanding the left side of (92) we have 

Now 

p(QJq(S) - 9(s”)JP(S) = J[P(S)9(S) - 9(S)P(S)I =o. 

Similarly 

pqqJqft(s”) -9WJPW = [PYS>9V> -9WPWl~=o* 

In the same way 

p(S)J9#(s”) - 9(QJPV) = 1[P(S)9V) - 9(S>PV>l = B(9, P>. 

Finally 

P”W9(S) - 9”WPW = J[P(Q9W - 9WPWl = B(9, P>. 

This proves the theorem. H 

As an immediate corollary we obtain the following 

COROLLARY 5.1. Let p and 9 be polynomials of degree n. Then 

)detRes(p,q)I=IdetB(p,q)). (93) 

In particular the nonsingularity of either matrix implies that of the other. As 
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is also well known these conditions are equivalent to the coprimeness of the 
polynomials p and q. 

6. BEZOUT AND HANKEL MATRICES 

In this section we explore some of the close relations between Bezout and 
Hankel matrices. 

DEFINITION 6.1. Let g = p/q be a strictly proper rational function. The 
Hankel map Hg: F[z] + z -‘F[[z-‘I] induced by g is defined by 

H,f=r_gf for f E F[z]. (94) 

If we assume p and q in the representation g = p/q are coprime, then 
HP is not invertible, as it has a large kernel, given by 

KerH,=qF[z] (95) 

and a small image, given by 

Im Hg = Xg. (96) 

However, if we define a map H: X, + X4 by 

r?f = H,f for f EXs, (97) 

then, because 

F[z] =X,W+], (96) 

H becomes an invertible map. 
The relation of the map H to the intertwining map p(S,) is given by the 

following. 

THEOREM 6.1. Let the map ps: Xq -+ X, be defined by Equation (9), 
and let H be defined as above. Then the following diagram is commutative: 

PCS,) 

x-x 
9 

\I 
4 

-1 

R 4 

Xq 
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Proof. We compute, for f E X,, 

P-lP(S,)f= 9- 'noPf=9-'qa_q-l~f=a_gf=H,f=17f. n (loo) 

From the previous diagram we obtain a result of Lander (1974) character- 
izing the inverse of finite, nonsingular Hankel matrices as Bezoutians. We 
will consider minimal rational extensions of the sequence g,, . . . , g,,- 1, i.e. 
strictly proper rational functions of the form 

PC4 O” 
d4 = s(z) = i~lgizm'~ (101) 

with p and 9 coprime and 9 of minimal degree. 

THEOREM 6.2. Let H be the Hankel matrix 

which is assumed to be nonsingular. Let g = p/9 be any minimal rational 
extension of the sequence g,, . , . , g2n_1 with p and 9 coprime. Let a be the 
unique polynomial of degree =C n satisfying the Bezout equation (22). Then 
we have 

H-‘=B(q,a). (3 

Proof, Since g is a minimal rational extension of the sequence 
g,,..., g,,_ i, we must have deg 9 = n. Let us write 

9(z) = 2” + 9,_4-l+ * * * + 90. (104) 

From Equation (100) we obtain 

H= p-‘&J. (105) 

If a is the polynomial appearing in the Bezout identity (22) then clearly we 
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obtain the important relationship 
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Hu( s,J = p;r. ( 106) 

The proof is completed by taking the right matrix representations in Equa- 
tion (106). We consider the standard and control bases in X, and B,,, the 
basis of Xq obtained as the image of B,, under the isomorphism nil, i.e. 
B,, = {q-lei,..., 4 - ‘e, }. Obviously we have 

[ 1 
rc 

p;l co=I. 007) 

From Equation (1M) it follows therefore that 

Now, by Theorem 3.2, 

[4sQ)]:= B(%4. (10% 

To complete the proof we will show that [R] f: is equal to the Hankel 
matrix H in (102). Indeed, if hij is the i, j element of [ HIif, then we have, 
by the definition of a matrix representation of a linear transformation, that 

n hijei jjzj-i = m_pq-lzi-l= 1 - 

i=l 4 * 

so 

5 hijei = qr_q-lpzj-l = rqpzj-l. 
i=l 

(111) 

Using the fact that B,, is the dual basis of B,, under the pairing ( 13) we have 

hkj = F hij(ei, zkwl) = (rqpzj-l, zk-l) 
i=l 

= [ q-lqlr_q-lpzi-l, &l] = [ m_q-lpzi-l, Zk 

= [gzi-l, Zk-l] = [g, Zj+k-2] = gj+k_l.. 

‘I 

n (112) 

(110) 

Thus we have not only shown that the inverse of a Hankel matrix, if it 
exists, is a Bezoutian matrix, but we have also identified the corresponding 
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polynomials. While there are many minimal rational extensions, they all 
naturally lead to the same inverse for H. 

Given two coprime polynomials p and 9 with deg p < deg 9 = n, it goes 
back to Her-mite (1856) that 

e(H,,,J = a97 Pa (113) 

where u denotes signature. For this, and results related to realization theory 
and the Hermite-Hurwitz theorem, see Fuhrmann (1983). Now, by Sylvester’s 
law of inertia, it follows that the quadratic forms H,,, and B(9, p) are 
congruent. It is of interest to find such a specific congruence relation, and 
this we proceed to do. In a slightly different formulation the following results 
appear in Krein and Naimark (1936). In their paper the connection between 
Bezout and Hankel forms is credited to Hermite himself. 

THEOREM 6.3. Let g = p/9 with p and 9 coprime polynomials satisfy- 
ing deg p < deg 9 = n. Then, if g(z) = CFz=lgiz-i, we have 

= 

b 11 

b,, 

. . . g” 

. . . 
: I g2*-1 

:1 
. . 

. . 

\l $, 1.. $“_l 

. . . b III 

. . . 
k 

= 

91 

1 

b 11 

b,l 

31 
. . 

. . . b lfl 

. . . b’ tl” 

. . 
9n-1 1 

. 1 
. . 

(11.51 



1066 U. HELMKE AND P. A. FUHRMANN 

Note that equation (115) can be written more compactly as 

Proof. To this end recall the diagram (99) and also the definition of the 
bases B,,, Z?,, and B,,. Clearly the operator equality 

a= Pg-‘PPJ (117) 

implies a variety of .matrix representations, depending on the choice of bases. 
In particular it implies 

LB]: = [~ql];[~(s~)];~[Z]: = [~~‘]~[Z]~~[P(S,)~~~[Z]~. (118) 

Now it was proved in Theorem 6. 2 that 

Obviously [pi ‘12 = Z and, using matrix representations for dual maps, 

Here we used the fact that B,, and B,, are dual bases. So [Z]sg is symmetric. 
In fact it is a Hankel matrix, easily computed to be 

i 
41 . . . 4,-l 1 

. . 

[z];o= f . : . 

s-1 ’ 

,l 

(121) 



BEZOUTIANS 1067 

and so actually 

[z];=E=R. (122) 

Finally, from the identification of the Bezoutian as the matrix representation 
of an intertwining map for S, 

B(9, P) = [ P(s,)]:~ 

we obtain the equality 

H, = fiB(9, P)R 

(123) 

(124) 

with R defined by (122). 

COROLLARY 6.1. Let g = p/q with p and 9 coprime polynomials satisfy- 
ing deg p -C deg 9 = n. Zf g(z) = CEo=lgizPi and 

then 

det H = det B(9, p). 026) 

Proof. Clearly det R = ( - l)n(“-1)/2 and so (det R)2 = ( - l)“(n-l) = 1, 
and hence (126) follows from (124). Since obviously 

(127) 



1068 U. HELMKE AND P. A. FUHRMANN 

we have 

n (128) [z];;=([z]:)-l. 

The matrix [ I]$’ has a polynomial characterization. 

LEMMA 6.1. Let q(z) = zn + q,_l.zn-l + . . . + qo, and I?,,, B,, be the 
control and standard bases respectively of X,. Then 

R = [I];; = 

. f 1 
. . . 

. . 

. . 

1 41 . * . #n-l 

(129) 

where, for ~(2) =4$(z) = z”q(z-l), +b(z) = Go + . . . + I),_~z~-’ is the 
unique solution, of degree -C n, of the Bezout equation 

am+ z%(z) = 1. (130) 

With J the transposition matrix defined in (82) we compute 

However, if we consider the map Szn, then 

1 9n-1 . . . 91 

. . . 
. . . 

. 9n-1 
1 

= 9#(S,“) = ~(S,n), 

(131) 

(132) 
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and its inverse is given by $(S,“), where J, solves the Bezout equation (130). 
This completes the proof. n 

The matrix identities appearing in Theorem 6.3 are interesting also as 
they include in them some other identities for the principal minors of H,. We 
state it in the following way. 

COROLLARY 6.2. Under the previous assumption we have, for k < n, 

I 
\ ’ \ 

b n-k+ln-k+l ‘. . b n-k+ln 

x 1 

:. i, 

. . 

in-k+l “’ in 

. . 

(133) 

In particular we obtain 

COROLLARY 6.3. The rank of the Bezoutian of the polynomials q and p is 
equal to the rank of the Hankel matrix H,,,4 and hence to the order of the 
largest nonsingular principal minor, when starting from the lower right hand 
corner. 

Proof. Equation (133) implies the following equality: 

det(gi+j-l):,j-l =det(bij)yjcn_k+l. n (134) 

At this point we recall the connection, given in Equation (126), between 
the determinant of the Bezoutian and that of the resultant of the polynomials 
q and p. In fact this can not only be made more precise, but we can find 
relations between the minors of the resultant and those of the corresponding 



1070 U. HELMKE AND P. A. FUHRMANN 

Hankel and Bezout matrices. We state this as 

THEOREM 6.4. Let q be manic of degree n, and p of degree Q n - 1. 
Then the lower k X k right hand corner of the Bemtian B( q, p) is given by 

kiln-k+1 

i”-” . 

‘Pn-k+l ’ 

- 

9,-l . 

. . . bn-k+ln 

. . . in 

. . PO 

. . 

. . Qo 

. . . 

\ /%-k+l . . 

PO : 

. . 

qn-I 1 
Pn-11 1 

. . 

qn-k 

\ I 

I \ 

. 

P”-I 0 
0 

Moreover we have 

= 

Pn-k+l . ’ 

Pn-k qn-k 

Pn-k qn-k 

P,-1 qn-1 . 
0 1 P,-I Qn-1 

0 1 . 

. . %-1 1 
. 1 

. . 

. . R-1 “1 . 0 

. 

Pn-k qn-k 

(135) 

(136) 

R-1 qn-1 
0 1 
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Before proving the theorem let us take note of the following result; see 
Halmos (1958). 

LEMMA 6.2. Let A, B, C, and D be square matrices such that C and D 
commute. Then 

=det(AD- BC). 

Proof. Without loss of a generality, let det D # 0. Since clearly 

(t :I=( A-y’C ;j(D!lc ;j, 

we have 

(137) 

(138) 

=det(A- BD-‘C)detD 

=det(A-BCD-‘)detD=det(AD-BC). n (139) 

Proof of Theorem. The resultant of q and p is given by Equation (90) or 
equivalently by 

Clearly q#(S) is invertible, and the matrices q#(S) and p#(S) commute. 
Thus the previous lemma can be invoked to yield 

detRes(p,q) =det(p(S”)q#(S) - q($)p#(S)). (141) 

Hence as, B(p, q) = (p(f?&~S> - q(~)p#(S))J, we have 

detB(p,q)=detRes(p,q)detJ=detRes(p,q)( -l)n(nP1)‘2 (142) 
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We can use the factor ( - 1) n(“- ‘)I2 to reorder the columns of the resultant in 
the following way: 

PO 40 
PO 90 

P*-1 9n-1 . . 
1 Pn-1 9,-l 

1 

and hence we have 

g, ... grl 

g, . . . * g2n-1 

= det( bij) 

I 

= 

. . 
. . 

PO 90 

. . . 

. . . 

1 P,-1 9n-1 
0 1 

PO 90 
PO 90 

. . 

. . . 
. . 

PO 90 

: P,-1 9”V1 . . 

1 Pn-1 . 
1. . . 

. . . 

. . . 

1 P,-1 9n-1 
0 1 

043) 

From the representation (89) of the Bezoutian it follows that the k X k lower 
right hand comer of the Bezoutian has the required representation (135). 
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Using Lemma 6.2 as before, we obtain the determinantal relations 

(- l)k’k-1)‘2clet(b,j)~ i=n_k+l 

Pn-k 

= Pn-1 
0 

Pn-k 

= P”_l 

0 

Pn 

Pn-1 

Qn-k 
Pn-k qn-k 

s-1 

1 P,-1 qn-1 

0 1 

qn-k 40 

Pn 

Pn-k qn-, 
Pn-k+l 1 

Pv1 

0 

90 

4,x-k 
%mk+l 

4vl 

1 

(144 

An application of Equation (134) yields the equality (136). From (136) the 
Hurwitz stability test can easily be obtained. n 

7. PLUCKER CHARACTERIZATION OF BEZOUTIANS 

We give a characterization of an arbitrary n X n Bezoutian matrix B by 
means of certain quadratic relations among the entries of B. These quadratic 
formulas appeared first in Plucker’s work in the 19th century, in the descrip- 
tion of the Grassmann manifold as a subvariety of a projective space. 

Let Gd( F”+‘), 0 < d < n + 1, denote the Grassmann variety consisting of 
all ddimensional linear subspaces of F”+l. For d = 1 this specializes to the 
n-dimensional projective space 

P”(F) = G1(F”+‘), 
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and we use the homogenous coordinates 

to describe a point in P”(F). Any V E Gd(F”+l) has a basis, formed by the 
columns of a full rank (n + 1) x d matrix 

E F(“+l)Xd 

For any increasing sequence I = (ii,. . . , i,) of integers with 

let X’ denote the d X d submatrix of X formed by the row vectors 

Xii,. . .) X’n. Thus one of the minors 

d(Z) = d,(X) = det X’ 

will be nonzero. Using the lexicographical ordering on the set of indices I, we 
obtain a sequence of minors dXX),...,d n+l (X) of X. 

i 1 d 

DEFINITION 7.1. The P&km embedding of G,(F”+‘) is the algebraic 

map 

c 1 
n+l -1 

9:Gd(F”+l)-+P d (F) 

which associates to each basis matrix X of V E G,(F”+ ‘) the unique point of 

( 1 
n+i -1 

P d with homogeneous coordinates [d 1( X), . . . , d n + 1 (X )]. 
( 1 d 

It is well-known fact that 9 is an algebraic embedding. Thus the image 
set of 9 is isomorphic to G,(F”+‘) and is defined by a set of quadratic 
relations, the P&km rehtions of Gd( F”+ ‘); see Hodge and Pedoe (1968) or 
Kleiman and Laksov (1972). Instead of considering the Plucker relations for 
an arbitrary Grassmannian, we assume d = 2, which is the case of most 
interest to us. 
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THEOREM 7.1. Let d(ij), 0 G i -C j < n, denote the bgeneous coordi- 

( 1 
n+l -1 

n&es of a point in P ’ (F). Then there exist linearly independent 
vectors 

with 

d(ij) = piqj - PjQi 

E F(“+ 1) 

forall Odi<j<n 

ifandonlyifforall O<i< j<k<l<n 

d(ij)d(kZ) - d(ik)d(jZ)+ d(iZ)d(jk) =O. 

Proof. The necessity is checked by a brute force computation: 

d(ij)d(kZ) - d(ik)d(jZ) + d(iZ)d( jk) 

= (4iPj- Piqj)(‘liPl- PjQl) 

- (4iPi - Piqi)(qjPl - Pj4l) 

+ (9iPl- Pi4l)CqjPk - Pj4k) 

= 4i9k( PjPl - PIPj) + 4iqlCPjPk - PkPj) 

+Qiclj(PkP,-PlP,)+qjq,(PiPI-P~Pi) 

+‘ljQj(PiPk-PkPi)+qkql(PiPj-PjPi) 

i 1 n+l -1 

To prove sufficiency, consider a point in P ’ (F) whose homoge- 
neous coordinates d(ij), 0 < i < j < n, satisfy the Pliicker relations 

d(ij)d(kl)-d(ik)d(jZ)+d(il)d(jk)=O. 

Let d(i, j *) denote the first nonzero element among the d(ij), ordered 
lexicographically. Since the d(ij) are homogeneous coordinates, we may 
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assume d( i * j .J = 1. Now define linearly independent vectors 

PO 90 

1.1 I.1 * > . E F(“+l) 

?i 4, 

I 
0, hi,, 

1, i=i,, 
Pi= 0 

‘d(i,,i), 

i, <i< j*, 

i> j*, 

i 

0, j<j*, 
9j= 1, 

. . 
]=I*> 

4i,,j), j>j*. 

Using the Pliicker relations it is easily checked that 

and the result follows. 

Given the pair of 
then we have 

Pi9j - Pj9i = 4ij ), 

n 

polynomials p(z) = C:,opizi and 9(z) = ~~~09i~i, 

n n 

~(~)P(w)-P(z)~(w) = C C 4ijb’wj 
i=o j-0 

with 

d(ij) = CliPi- Pi9j forall O<i, j=Sn. 

There is a simple formula relating the entries of the Bezoutian to the d(ij). 

LEMMA 7.1. ‘ForallO<i,j<n 

d(ij) = bi_l,j - bi, j_1. 

Here we assume bij = 0 for i, j < 0 or i, j > n. Using this simple lemma 
we can reformulate the Plucker relations for G,(F”+‘) as giving a necessary 
and sufficient condition for an arbitrary symmetric matrix to be Bezoutian. 
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THEOREM 7.2. Let B = ( bi j) E Fnx” be a symmetric matrix. Then there 

existpoZynomialsp,qEF[x] with max(degq,degp)<nandB=B(q,p) if 
and only if for all 0 < i < j < k -C 1~ n we have 

Let B,,(F) denote the set of all n X n Bezoutian matrices, i.e 

B,,(F)= {bEFnX”~3q,pEF[x],max(degq,degp)<n, 

suchthat B=B(q,p)}. 

We call B,,(F) the Bezout variety. 

THEOREM 7.3. B,(F) is an irreducible algebraic subvariety of F n Xn of 
dimension 2n - 1. The origin B = 0 is an isolated singular point of B,,(F); 
thus B,(F)\(O) is smooth. 

Proof. That B,(F) is algebraic follows from Theorem 7.2. In fact it 
implies that B,(F) is quadric. Since the entries bi j depend linearly upon the 
Plucker coordinates of the Grassmannian G,( F”+ ‘), embedded in 

i :I 
n+l -1 

P 2 (F), we see that B,,(F) is isomorphic to the affine cone over the 
Grassmannian G,( F”’ ‘). Thus 

and B,(F)\{01 is smooth. The irreducibility of B,(F) is clear, since B,(F) is 
the image of the affine space of pairs of polynomials (q, p) with 
max(deg q,deg p) < n under the algebraic mapping (q, p) -+ B(q, p). Since 
that space is irreducible, its image B,(F) is also irreducible. W 

REMARK. The proof shows more. Consider the F* = GL,( F) action 

a: F*x(B”(F)\wl) + B”(F)\W 
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(A, B) I+ A-B, 

i.e. by scalar multiplication. This is a free algebraic action of the reductive 
group GL,( F ), and the quotient variety 

B,(F) = (Bn(F)\W)/%(F) 

i 1 n+l -1 

is a projective variety embedded in P 2 , which is isomorphic, by 
Theorem 7.3, to the Grassmannian G,( F n+ ‘). 

Rmamc. There are 

describe the Bezoutian 
matrices. Since 

quadratic equations in Theorem 7.2 which 

matrices as a subvariety of the symmetric n x n 

bB,(F)=2n-1> 

this dimension count indicates that the system of quadratic equations for 
B,(F), given in Theorem 7.2, is far from being minimal It seems of interest 
to find a minimal, independent set of quadratic equations characterizing the 
Bezoutian matrices. 

8. CASCADE AND OUTPUT FEEDBACK EQUIVALENCE 

DEFINITION 8.1. Let g = p/q and g^ = c/G be two rational functions. 
We say that g and g^ are cascade equivalent if for some 

we have 

,. %fb 
g= yg+S’ 

(145) 
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If g and g are proper, then they are output feedback equivalent if they 
are cascade equivalent and /? = 0, i.e. 

g’cug 
yg+a’ 

(146; 

If g and g are proper, then they are direct gain output feedback equivalent, 
or static output feedback equivalent, if they are output feedback equivalent 
and (Y = 6, or equivalently 

A 
g 

g= l-kg’ 

The Bezoutian behaves particularly simply 
ables. In fact from Theorem 3.1 one has 

(147) 

under linear changes of vari- 

LEMMA 8.1. For any a P 

i 1 Y 8 
E GL,(F) we have 

B((Yq+pP,YQ+SP)=(LY6-PY)B(q,P). ( 148) 

In particular this shows that the Bezoutian B(q, p) of a transfer function 
g = p/q is an invariant under the action of direct gain output feedback, i.e. 

g e g/(I - kg). 
Given two rational functions g and g, it is of interest to find conditions 

on their output feedback equivalence. Let g(z) = p(z)/q(z) be any irre- 
ducible representation with q manic. Let p(z) =C::tpizi and q(z) = 
Cr= Oqi z i. Obviously the subspace of F n + ’ spanned by 

’ PO 40 \ 

P,’ 1 %- 1 

\o 1, 

is an output feedback invariant. In particular, up to a constant factor, all 2 X 2 
minors, i.e. all the functions 

Piqj - Pj’li? (149) 

are output feedback invariant. 
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For the case of direct gain output feedback it has been proved by 
Yannakoudakis (1981) that g and g are equivalent if and only if all the 
functions piqj - pj’li agree on g and g. The following theorem is a formal- 
ization of results implicit in Antoulas (1986), Fuhrmann (1985), and Heinig 
and Rost (1984). It shows that the Bezoutian B( g ) of a transfer function g is, 
up to a scalar factor, a complete invariant for output feedback. 

THEOREM 8.1. Given two arbitrary rational functions g and g E F(z). 
Then 

(a) g is a cascade equivalent to g if and only if the respective Bezoutians 
are proportional, that is, 

B(i) = cB(g) 050) 

for some nonzero c E F. 
(b) Zf g and g are (strictly) proper, then g is output feedback equivalent 

to g if and only if the respective Bemutians are proportional, that is, if and 
only if equality (150) holds. 

(c) Zf g and g are strictly proper, then g is direct gain output feedback 
equivalent to g if and only if the respective Bezoutians are equal, that is, if 
and only if 

B(g^) =Bk). (151) 

Proof. Since cascade equivalence is transitive and every nonproper 
transfer function is clearly cascade equivalent to a strictly proper one, then it 
clearly suffices to prove part (c). So assume g, and g, are strictly proper. 
The necessity of Equation (151) follows from Lemma 8.1. To prove suffi- 
ciency assume the equality (151) holds. Note that if g = p/9 then 

B(9> P)(C 4 = 
964Pb) - Pc49W 

Z-W 

= f: e bijZi-lwi-l 

i-1 j-1 

= 9b)Pb) - 9(4P(4+ 9WPb) - PW9W 

Z-W 

= -9b) 
P(Z) -P(w) 

+ P(Z) 
9(4-9(w) 

Z-W z-w . 
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This implies, by taking limits, that 

c 2 bijP+j-2= Pi’- 9(+‘(2). (152) 
i=r j=l 

Assume now that B(g) = B(g). Since, by Corollary 3.1, the numerator 
polynomial is determined by the last column of the Bezoutian, we have 
p = 6. Let h = 9 - 4, and assume without loss of generality that h is not 
identically zero. Now, by Equation (152), 

or 

B(9 - 9, P) = 0, 

~(~)k’W9’Wl - [W - 9W1 PW = pW+) - Wp’(d = 0. 

However, this implies that 

or dz)/h(z) = constant, and hence the equivalence of g and 

REMARK. Theorem 8.1 generalizes a previous result of 

I3 n 

Yannakoudakis 
(1981). Apparently Yannakoudakis was unaware of the Bezoutian and its 
properties. He proves in a direct but more complicated way that the 
quadratic form B(9, l)H,B(q, 1) is a complete invariant for direct gain 
output feedback, which, in view of (115) in Theorem 6.3, is exactly what is 
stated in Theorem 8.1. 

THEOREM 8.2. Let g = p/q and g^ = B/B be two strictly proper rational 
functions. Then B(g^) = B(g) if aand only if 

and 

C=r, 053) 

$4 - 64 = p’9 - p9’, 

where p’ denotes the derivative of p. 

054) 
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Proof. The necessity is obvious by Corollary 3.1 and the identity 

B(q, Ph, z) = 44Pb) - MPG). (155) 

To prove sufficiency let us note that Equations (153) and (154) are 
equivalent to the identity 

Thus there exists a constant k E F such that 

1 1 
-- 

g^o=g(z) kY 

which is equivalent to 

a4 = 
g(z) 

l-kg(n) ’ 

056) 

(157) 

n (158) 

The breakaway points of a real transfer function g E R(z) are defined as 
the real complex roots of 

PWq(4 - q’WP(4 = 0. 059) 

These points are the branch points of the corresponding root loci; see 
Willems (1970). Using Theorem 8.2 we immediately obtain another remark- 
able result of Bymes and Crouch [ 19851. 

COROLLARY 8.1. The real and complex zeros and breakaway points of a 
strictly proper transfer function g E R(z) are a complete set of invariants for 
static output feedback. 

Now clearly it is of interest to be able to reconstruct the Bezoutian from 
the set of zero and breakaway points. This in fact can be done, by an 
application of the division algorithm. So assume we look for g = p/q and we 
know the polynomials p(z) and r(z) = p(z)q’(z) - q(z)p’(z). Let us write 

44 = a,WpH - q,W* degq,<degp. MW 
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Differentiating, we can write 

4’(z) = oX4nW-t +)PW - SW 

and hence 

= &>P”b> - M49;(4 - P’W9,b)l. 

1083 

(161) 

(162) 

Now we clearly have, inspecting the highest coefficient, that 

deg[pq;-p’q,] =degp+degq,-1<2degp-I=degp’-I. (163) 

Thus Equation (162) is just the division rule applied to T and p2. It follows 
that the polynomial ui( z) is only determined up to an additive constant. 
Inspecting Equation (160) it follows that 9 is determined up to a constant 
multiple of p, i.e. up to constant output feedback. 

These invariants, i.e. the zeros and breakaway points, are not indepen- 
dent, and the question arises whether one can give a minimal set of invariants 
for output feedback. To deal with this question we consider the quotient 
space of all transfer functions of McMillan degree n modulo output feedback. 
In this connection we refer also to Brockett and Krishnaprasad [1980]. 
Explicitly, let 

Rat(n)= g=$~R(z) p,qcoprime,degp<degq=n 
I 

(I64 

denote the space of all real strictly proper transfer functions of degree n, and 
let .F denote the output feedback group, consisting of all invertible 

E GL,(R). Then .F acts on Rat(n) by 

ag 
gH- 

Yg + 6 t 165) 
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Byrnes and Crouch have shown that the quotient space Rat(n)/9 is a 
smooth quasiprojective variety of dimension 2n - 2 embedded in the projec- 
tive space 

PN(R), yj7= n+l -1 

i 1 2 ’ 

by the Plucker embedding. Using the Bezoutian, we can prove a stronger 
version. First, let us show 

LEMMA 8.2. The quotient space Rat(n)/9 is an analytic manifold of 
dimension 2n - 2. 

Proof. 9 acts algebraically on Rat(n), and the stabilizer subgroup of 
each g E Rat(n) is equal to the nonzero scalar multiples of the identity. 
Hence there is only one orbit type, and it remains to show that the graph of 
the action is closed. Thus let g,, h, be a sequence of feedback equivalent 
systems converging in Rat(n) to g, and h, respectively. Since g,, h, are 
feedback equivalent, their Bezoutians are proportional, i.e., B(g,) = ckB(h,) 
for some nonzero ck. By continuity, B(g,) and B(h,) converge to B(g,) and 
B( h,) respectively. Hence ck must converge to a nonzero constant c, with 
B(g,) = c,B(h,). By Theorem 8.2, g, is feedback equivalent to hm and the 
result follows. n 

We saw, in Theorem 6.2, that given any transfer function g E Rat(n), the 
inverse of the Bezoutian B(g) is a Hankel matrix with 2n - 1 entries 

(g r, . . . , g,, _ r). Now associate to every g E Rat(n) the unique point in the 
projective space P 2n-2(R) whose homogeneous coordinates are the 2n - 1 
entries (g,,..., g,,_,) of the Hankel matrix B(g)-‘. By Theorem 8.1 this 
defines an embedding z : Rat(n)/F w P2”-2(R) defined by 

[gl - kl~...x2n-ll~ 

which is easily seen to be algebraic. The embedding a gives an isomorphism 
of the quotient space Rat( n)/S onto the Zariski open subvariety of P2n-2(R) 
defined by nonsingular arbitrary n x n Hankel matrices. Thus this shows 

THEOREM 8.3. Rat( n)/.F is a quasiprojective variety, embedded into 
P2np2(R) us an open subvariety. 

Of course, by reason of dimension, one cannot embed Rat(n)/F into 
some projective space Pk(R) of smaller dimension, k < 2n - 2. 
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COROLLARY 8.2. The homogeneous coordinates of the 2n - 1 distinct 
entries of the Hankel matrix H = B(g)-’ form a minimal and complete set of 
(projective) invariants for output feedback. 

We call these invariants the Bezout invariants. 

9. CANONICAL FORMS 

Throughout this section we identify the field F with R, the field of real 
numbers. When dealing with group actions an important topic is the exis- 
tence or nonexistence of continuous canonical forms. For the output feedback 
group action on Rat(n) given by 

ag 
gc, P+x’ (187) 

Bymes and Crouch (1985) have shown that a globally defined continuous 
canonical form does exist if and only if the McMillan degree n is odd. Their 
argument is based on topological obstruction theory and does not allow one 
to explicitly construct such a continuous canonical form for odd n. As we 
shall see, the construction of the Bezoutian allows us to explicitly construct 
such a continuous canonical form. For this purpose we introduce a normal- 
ized version of the Bezoutian. 

DEFINITION 9.1. Let g = p/q E Rat(n), with n odd. The normalized 
Bezoutian is defined as 

1 
BN(g) = BN(o> P) = n 

Jdet 
B(g) (168) 

Obviously we have 

BN(Ag) = BN(g) 069) 

for any nonzero real number h, and detBN(g) = 1. By the same argument as 
in the proof of Theorem 8.2 one shows 

THEOREM 9.1. Assume n is odd. Then g, h E Rat(n) are output feed- 
back equivalent if and only if BN(g) = BN(h). 

Clearly, for g E Rat(n), the entries of BN(g) are smooth, semialgebraic 
functions of g. 
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Given any normalized Bezoutian BN = BN(g), we construct two coprime 
polynomials P BN, OBN as follows. First define 

n-l 

P,,(z) = C Pizi2 

i=O 

where 

= BNe, 

denotes the last column of BN. To construct qBN, let 

(170) 

(171) 

(172) 

denote the inverse of BN. Then 

g, ... gn-1 grl 1 
g, ..’ gn g ntl z 

9BNb) = ! (173) 

g, ... g2n-2 g2n-1 .z 
n-1 

g n+l *** g2n-1 0 .zn 

Note that, by our normalization (168) and Equation (116), det H = 1. 

THEOREM 9.2. Let n be odd, and BN = BN(g) denote the rwnnalized 
Bezoutian of g = p/q E Rat(n). Then the mup /3 : Rat(n) + Rat(n) given by 

P PBN 
-I-+----- 
9 9BN ’ 

(174) 
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with pBN,qBN defined by Equations (171) and (173) respectively, is a 
smooth, semialgebraic canonical form for output feedback. 

Proof. That j3 is smooth and semialgebraic is clear by construction and 
by Theorem 9.1. Obviously the polynomials p,,, qBN are invariant urider 
output feedback. Thus it remains to show that 

(a) /3(g) = P(h) implies that g and h are output feedback equivalent; 
(b) p(g) is output feedback equivalent to g. 

It was shown in Fuhrmann (1986a) that 

(175) 

for some real number 5. Hence 

W(d) = &7Ed4 Pm&)) = B(q(4, PBN(4). 076) 

By Equation (171) and Corollary 3.1 we have 

Pm&) = ,;& PH. (177) 

Hence 

B@(d) = BNk). (178) 

An application of Theorem 9.1 proves (a) and (b) n 

A second, different canonical form for output feedback is defined using 
continued fraction expansions. To this end we review the basic facts concem- 
ing the continued fraction expansion of rational functions and its relation to 
the Euclidean algorithm and to partial realizations. We refer to Kalman 
(1979) and Gragg and Lindquist (1983) f or comprehensive expositions of the 
partial realization problem and its relation to continued fraction expansions. 

Let g be a strictly proper rational function, and let g = p/q be an 
irreducible representation of g with q manic of degree n. We define, using 
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the division rule for polynomials, a sequence of polynomials qi, and a 
sequence of nonzero constants pi and manic polynomials ai( z), referred to as 
atoms, by 

4-1’42 40= P7 

with deg qi + I < deg qi. The procedure ends when q, is the g.c.d. of p and q. 
Since p and q are assumed coprime, qr is a nonzero constant. 

The atoms a,,...,a, are real manic polynomials of degrees nl,. . . , n, 
such that 

n,+ . . . +n,=n (1W 

and pi are nonzero real numbers with 

ai = sign pi. (181) 

In terms of the pi and the ai( z), g has the continued fraction representa- 
tion 

g(z) = 
PO 

Pl 082) 
44 - 

44 - 
Pz 

CL&) --. 
Pr-2 

a,-,(4 - +) 
I 

We define now two sequences of polynomials Pk and Qk by the three term 
recursion formulas 

P_,= -1, PO = 0, 

pk+lw = a k+1MPk(4 -P!L1(4 ofw 
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and 

The expansion of Pk/Qk in powers of Z- ’ agrees with that of g up to order 
2C;k=rdegai +degak+,; see Gragg and Lindquist ,(1983). Computing the 
expression 

Qk+ Jk - QkPk+ 1 (185) 

and using the previous recursion formulas, we get 

QkilPk - QkPk+, = (%+&?k -&Qk-hPk - (ak+,Pk -pkPk-l)Qk 

=&(Q&, - Qk-lPkb @f-3> 

and by induction it follows that 

= 
-Pk..‘& 087) 

This implies that for each k, Qk and Pk are coprime. Moreover the Bezout 
identities 

hold with 

Pk(Z)Ak(Z)+Qk(Z)Bk(Z) =L 088) 

and 

Bk(z) = 
- ‘k-Ib) 

PO...Pk-l 

(189) 

(190) 

Obviously the Bezout identity (188) implies also the coprimeness of the 
polynomials A k and Qk. Since the Bezoutiant is linear in each of its 
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arguments we can get a recursive formula for B( A,, Qk): 

B(A,, Q,> = $(A,. . +L,> plQk-l, Ok) 

=B((P,...p,-,)-‘Qk-l,alrQlr-l-Pt-IQ~-2) 

= (A,. . dL,> -@-ddB(L dQdd 

+B((p,...Pk-2)-lQ1,-2,Q~~1) 

= i (PO.. .P,-,> -‘Qj(Z)‘(l, aj+,)Qj(w). (1”) 
j=l 

Thus we have obtained the polynomial relation 

Qd+-hbd - 4b)Q,b) 

= ~~l(~o...ilr_l)-lQj(~)[ “j+lc”;~“;+““‘]Qj(w) (192) 

or the equivalent matrix relation 

B(Qk,Ak)= i (Po...~j-1)-“j’(‘i+~,‘)~j~ (193) 
j - 1 

where R j is the nj X n Toeplitz matrix 

,(ji) .$i) . . . CiAf) , 
Rj= ‘. *. (194 

and 

Qj(z) = $ Qk”. 
j=O 

(195) 
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We will refer to (192) as the generalized Christoffeel-Darboux fmula. It 
reduces to the regular Christoffel-Darboux formula [see Akhiezer (1965)] in 
the generic case, namely when all the atoms a j have degree one. 

Combining Equation (193) with Theorem 6.2, we obtain the following. 

THEOREM 9.3. Let H be the nonsingular Hankel matrix (172), and let 
g = p/q be any minimal rational extension of the sequence g,, . . . , g,,_ i. Let 
/Ii and a,(z) be defined by (179) and the sequence of polynomials Pk and Qk 
by (183) and (184) respectively. Let the Toeplitz matrix Rj be defined by 
(194). Then 

H-‘C(&. . .P,~l)-'EijB(Uj+l,l)Rj. (196) 

Suppose g^ = fi/G is output feedback equivalent to g = p/q. Then c(z) 
= tip(z), a# 0, and G(z) = q(z) - kp(z). Therefore 

dz) = al(zh4z> -&q(z) 

implies 

44 =al(4W4) - 4&) 

= al(z)(w(z)) - 41l4^(2) + b(z)1 

= [al(z) -P&l fi(zz> - (a&)4(z)v 

and so 

#&=4& zl(z) = adz>p(z) -L&k. 

However, as ql/p = Q1/$, all other atoms of g and g^ coincide. Thus, 
changing the transfer function g(z) by output feedback amounts to rescahng 
&, by a nonzero constant and to changing the constant part of a 1( z) by an 
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arbitrary real number, i.e. al(z) ++ al(z) - CT. In particular, the degrees of n, 
of the atoms are output feedback invariant; see Fuhrmann and Krishnaprasad 
(1986). It follows that any transfer function g(z) as in Equation (182) is 
output feedback equivalent to a unique transfer function g^ given by 

with &i(z) = al(z) - a,(O). 
The map g c) g^ defines a canonical form for output feedback, and by 

choosing a state space realization for g^ as in Kalman (1979) or Gragg and 
Lindquist (1983), the following theorem is proved. 

THEOREM 9.4. Let (A, b, c) be a minimal realization of a transfm 
function g of McMillun degree n. Let ai( z), pi be the sequence of atoms of g, 
and assume that n,, . . . , n, are the degrees of the atoms and 

ak(z) = C ajk)zi + znk. 
i=O 

W) 

Then (A, b, c) is output feedback equivalent to a unique system of the form 
(A, &, 6) of the form 

1 

&= . ) 1:) 0 
c^=(O . . . 1 0 . . . O)-, (199) 

then 1 being in the n, position, and 

A= 

All Al, 
A,, A22 . 

. . A r-lr 
A rr-1 A, 

(200) 
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All= 

Aii = 

0 . . . 0 _ a(i)o 

1 - a’,i’ 

(201a) 

, i=2,...,r, (201b) 

\ 
0 

1: 
0 . ’ 

;, . . . 0 n, 
(202) 

Proof. Without loss of generality assume g = p/q is already in the 
canonical continued fraction form given by Equation (197). Let Q(z) be the 
polynomials, associated with q, defined in Equation (184). Then the set 

is clearly a basis for X,, as it contains one polynomial for each degree 
between 0 and n - 1. We call this basis the orthogonal basis because of its 
relation to orthogonal polynomials. In this connection see Gragg (1974) and 
Fuhrmann (1987). 

Next we construct an associated realimtion to g = p/q. We choose X, as 
the state space and define (A,, B,, C,) through 

A1=S4 

B,E = 5 for (‘EF”‘, (203) 
C,f = (pq-If)_, for f EXq. 

The realization of g is minimal, by the coprimeness of p and q, [see 
Fuhrmann (1976)], and its matrix representation with respect to the basis B,, 
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proves the theorem. In the computation of the matrix representation we lean 
heavily on the recursion formulas (184). n 

This defines a canonical form for output feedback, which we call the 
continued fiuction fi. By fixing the block sizes ni, i = 1,. . . , r, and the 
signs 6,=sign&,, i=l,..., T, of the nonzero entries as discrete invariants, 
it is easy to see that the above canonical form defines a cell decomposition of 
the orbit space Rat( n)/9. For this we refer to Furhmann and Krishnaprasad 
(1986), Helmke, Hinrichsen, and Manthey (1988), Hinrichsen, Manthey, and 
Pratzel-Wolters (1986), and Manthey (1987) for further details of the contin- 
ued fraction cell decomposition. 

We conclude with an example. 

EXAMPLE (n = 2). There are only three cells of Rat(2)/9, parameter- 
ized by rational functions 

1 
g(z) = z(z + a) 

1 
g(z)= p 1 

Zi+- 
z+Y 

1 
g(z)= p T 

z-- 
z+Y 

CXER, (204) 

p>O, YER, (205) 

Rat(e)/* splits into two connected components 

(Rat(2,O) uRat(O,2))/S and Rat(l,l)/F, 

where the first component is the 2cell parametrized by (206) while 
Rat(1, 1)/F is a Mobius band formed by a l-cell and a 2-tell. In particular, 
Rat(2)/S is not orientable. 
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