HARDY ALGEBRAS, BEREZIN TRANSFORMS, AND TAYLOR'S TAYLOR SERIES

PAUL S. MUHLY AND BARUCH SOLEL

ABSTRACT. Let $H^{\infty}(E)$ be the Hardy algebra of a countably generated W^* correspondence E over a W^* -algebra with separable predual M. Also let Σ be an additive subcategory of the category of normal representations of M on separable Hilbert space. For $\sigma \in \Sigma$, $\mathbb{D}(0, 1, \sigma)$ denotes the open unit ball in the intertwiner space $\mathcal{I}(\sigma^E \circ \varphi, \sigma)$, where σ^E is the representation induced by E in the sense of Rieffel and φ gives the left action of M on E. The families $\{\mathbb{D}(0,1,\sigma)\}_{\sigma\in\Sigma}$ are variants of the matricial domains first studied by Taylor in the early 1970's and more recently by Voiculescu; Popescu; Helton, Klep, McCullough, and Slinglend; and by Kalyuzhny-Verbovetski and Vinnikov. Among other things they satisfy the inclusion $\mathbb{D}(0,1,\sigma)\oplus\mathbb{D}(0,1,\tau)\subset$ $\mathbb{D}(0, 1, \sigma \oplus \tau)$. Each $F \in H^{\infty}(E)$ determines a natural, holomorphic, $B(H_{\sigma})$ valued function \hat{F}_{σ} on $\mathbb{D}(0, 1, \sigma)$ that we call the σ -Berezin transform of F. The family $\{\hat{F}_{\sigma}\}_{\sigma\in\Sigma}$ is uniformly bounded by $\|F\|$ and satisfies the intertwining equation $C\hat{F}_{\sigma}(\mathfrak{z}) = \hat{F}_{\tau}(\mathfrak{w})C$ for each C that intertwines σ and τ and satisfies $C\mathfrak{z} = \mathfrak{w}(I_E \otimes C)$. Thus $\{\widehat{F}_\sigma\}_{\sigma \in \Sigma}$ satisfies variants of the intertwining relations studied by Taylor and the others cited. We show, conversely, that if $\{f_{\sigma}\}_{\sigma \in \Sigma}$ is a uniformly bounded family of functions, $f_{\sigma} : \mathbb{D}(0, 1, \sigma) \to B(H_{\sigma})$, such that $Cf_{\sigma}(\mathfrak{z}) = f_{\tau}(\mathfrak{w})C$, for all C that intertwine σ and τ and satisfy $C\mathfrak{z} = \mathfrak{w}(I_E \otimes C)$, then f_{σ} admits one of Taylor's Taylor series. We use this series to show that given $\epsilon > 0$ and R, 0 < R < 1, there is an $F \in H^{\infty}(E)$ that is a finite sum of tensors such that $||f_{\sigma}(\mathfrak{z}) - \widehat{F}_{\sigma}(\mathfrak{z})|| < \epsilon$ for all σ and for all $\mathfrak{z} \in \mathbb{D}(0, R, \sigma)$.