Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner)

Homework 9. Submission date: 9.07.2024

Questions to submit: 1.b. 1.d. 2.a. 2.c. 3.e. 3.f. 4.b. 4.d.

Either typed or in readable handwriting and scanned in readable resolution.

- 1. **a.** Let $A(t) \in Mat_{n \times n}(C^r(\mathbb{R}))$, for $1 \le r \le \infty, \omega$. Prove: any local solution of $\underline{x}' = A(t) \cdot \underline{x}$ extends (uniquely) to a global solution $\underline{x}(t) \in C^{r+1}(\mathbb{R})$.
 - **b.** Prove: the dimension of the space of solutions of $x^{(n)} + a_{n-1}(t)x^{(n-1)} \cdots + a_0(t)x = 0$ is *n*. **c.** Let $\underline{x}(t), \underline{y}(t)$ be solutions of $\underline{x}' = A(t) \cdot \underline{x}$. Prove Grönwall's bound on the separation of

solutions: $||\underline{x}(t) - \underline{y}(t)|| \le ||\underline{x}(t_0) - \underline{y}(t_0)|| \cdot e^{\int_{t_0}^t ||A(s)||_{op} ds}.$

In particular, any solution of $\underline{x}' = A(t)\underline{x}$ satisfies: $\|\underline{x}(t)\| \leq \|x(t_0)\| \cdot e^{\int_{t_0}^t \|A(s)\|_{op} ds}$. **d.** Obtain a similar bound on $\|x(t)\|$ for any solution of x' = A(t)x + b(t).

2. a. Suppose a solution x(t) of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)}\cdots + a_0(t)x = 0$, with $a_j(t) \in C^0$ has infinitely many zeros on a compact interval. Prove: x(t) = 0 on this interval.

Can the compactness be weakened to boundedness here?

- **b.** Prove: the function $sin(t^p)$, $p \in \mathbb{N}$, cannot be a solution of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$ with C^0 -coefficients, for n < p.
- **c.** Prove: the function $e^{-\frac{1}{t^2}}$, extended to (-1, 1), cannot be a solution of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$ with C^0 -coefficients, for any n.
- 3. Let $\mathbb{X}(t)$ be a fundamental matrix of $\underline{x}' = A(t)\underline{x}$ or $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$. Prove: **a.** There exists a fundamental matrix $\mathbb{X}(t)$ satisfying $\mathbb{X}(t_0) = \mathbb{I}$.
 - **b.** Any two fundamental matrices are related by $\tilde{\mathbb{X}}(t) = \mathbb{X}(t) \cdot U$ for $U \in GL(n, \mathbb{R})$ a constant matrix.
 - **c.** $\mathbb{X}(t)$ is non-degenerate for each t. In the case $\underline{x}' = A(t)\underline{x}$ it satisfies: $\mathbb{X}'(t) = A(t) \cdot \mathbb{X}(t)$.
 - **d.** The (unique) solution for the initial condition $\underline{x}(t_0) = \underline{x}_0$ is: $\mathbb{X}(t) \cdot \mathbb{X}^{-1}(t_0) \cdot \underline{x}_0$.
 - e. Let $\mathbb{X}(t), \mathbb{X}(t)$ be two fundamental matrices of the system $\underline{x}' = A(t)\underline{x}$. Suppose $\mathbb{X}(t_1) = \mathbb{I}$ and $\mathbb{X}(t_2) = \mathbb{I}$. Prove: $\mathbb{X}(t_2) \cdot \mathbb{X}(t_1) = \mathbb{I}$.
 - **f.** Let $\mathbb{X}_A(t)$ be a fundamental matrix for $\underline{x}' = A(t) \cdot \underline{x}$, let $\mathbb{X}_B(t)$ be a fundamental matrix for $\underline{x}' = B(t) \cdot \underline{x}$. Prove: if $\mathbb{X}_A(t)B(t) = B(t)\mathbb{X}_A(t)$ then $\mathbb{X}_A(t)\mathbb{X}_B(t)$ is a fundamental matrix of $\underline{x}' = (A(t) + B(t))\underline{x}$.
- 4. **a.** Given two functions $x_1(t), x_2(t) \in C^1(a, b)$ (not necessarily solutions of some ODE), suppose $W(x_1(t), x_2(t)) = 0$ on (a, b). Does this imply the \mathbb{R} -linear dependence of $x_1(t), x_2(t)$?

(Hint at the end of page) **b.** Prove: if $W(x_1(t), \ldots, x_n(t)) = 0$ on (a, b) for some analytic functions, then these functions are \mathbb{R} -linearly dependent on (a, b).

- **c.** Verify: the functions $sin(t^2)$, $cos(t^2)$ are (linearly independent) solutions of $tx''-x'+4t^3x=0$, but the Wronskian of these functions vanishes at a point. Any contradiction to **4.b**?
- **d.** Prove: if $\lim_{t\to\infty} \int^t trace[A(s)]ds = \infty$, then at least one solution of $\underline{x}' = A(t)\underline{x}$ is unbounded.

Show by an example that the conclusion " $||\underline{x}(t)|| \to \infty$ for at least one solutions" fails.

- e. Prove: the rescaling $\underline{x} \to e^{\pm \int^t \frac{trace[A(s)]}{n} ds} \underline{x}$ transforms $\underline{x}' = A(t) \cdot \underline{x}$ into a system $\underline{x}' = \tilde{A}(t) \cdot \underline{x}$ with $trace[\tilde{A}(t)] = 0$. (Should one choose here + or -?)
- **f.** Prove: the rescaling $x \to e^{\pm \int_{n}^{t} \frac{a_{n-1}(s)}{n} ds} x$ transforms the equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$ into an equation with $\tilde{a}_{n-1}(t) = 0$. (Should one choose here + or -?)

Ben-City of the

סיטת בן-גוריון