Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner) Homework 8. Submission date: 2.07.2024

Questions to submit: 1.b. 1.e. 2. 3.b. 3.d. 4.a. 4.b. 4.c.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Equations of type $t^n x^{(n)} + a_{n-1}t^{n-1}x^{(n-1)} + \cdots + a_1tx' + a_0x = 0$ (here a_{\bullet} are constants) are called Euler-Cauchy equations. They are used e.g. in physics and in finance.
 - **a.** One approach to solve is by time rescaling. Prove: the substitution $t = e^{\tau}$ transforms the Euler-Cauchy equation into a linear ODE with constant coefficients.
 - **b.** Write the general solution for the ODE $t^2x'' + tx' + a_0x = 0$.
 - **c.** In the general case prove: the characteristic polynomial of the obtained ODE with constant coefficient is $L(\lambda) := \lambda(\lambda 1) \cdots (\lambda n + 1) + a_{n-1}\lambda(\lambda 1) \cdots (\lambda n + 2) + \cdots + a_0$.
 - **d.** Prove: if one presents $L(\lambda) = \lambda^n + b_{n-1}\lambda^{n-1} + \cdots + b_0$ then the initial equation can be presented as $(t\frac{d}{dt})^n x + b_{b-1}(t\frac{d}{dt})^{n-1}x + \cdots + b_0x = 0$, for some constants b_{\bullet} .
 - e. Conclude: for $t \neq 0$ the space of solutions of a Euler-Cauchy equation is spanned by the functions of type $\{ln(t)^{k_j} \cdot t^{\lambda_j}\}$, with $k_j \in \mathbb{N}$. Here the function t^{λ} for $\lambda \in \mathbb{C}$ is defined by $t^{\lambda} := e^{\lambda \cdot ln(t)} = |t|^{Re(\lambda)} (cos(Im(\lambda)ln(t)) + i \cdot sin(Im(\lambda)ln(t))).$
- 2. (A bound on the speed of separation of solutions) Let $x_1(t), x_2(t)$ be solutions of the ODE $x^{(n)} = f(t, x, \dots, x^{(n-1)})$. Suppose $|f(t, \underline{y}) f(t, \underline{\tilde{y}})| \leq g(t) \cdot |\underline{y} \underline{\tilde{y}}|$ for a function $g(t) \in C^0$. Prove: $|x_1(t) - x_2(t)| \leq e^{\int_{t_o}^t g(s)ds} \cdot \sqrt{\sum_{j=0}^{n-1} |x_1^{(j)}(t_o) - x_2^{(j)}(t_o)|^2}$. Hint: use the Grönwall-Bellman inequality for the system $\underline{x}' = f(t, \underline{x})$.
- **3. a.** (Variation of constants) Suppose x(t) is a solution of $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$. Then one looks for the solution in the form $x(t) \cdot y$ to pass to an equation $y^{(n-1)} + \tilde{a}_{n-2}(t)y^{(n-2)} + \cdots + \tilde{a}_0(t)y = 0$. Let $y_1(t), \ldots, y_{n-1}(t)$ be its independent solutions. Prove: the functions $x(t), x(t) \cdot \int^t y_1(s)ds, \ldots, x(t) \cdot \int^t y_{n-1}(s)ds$ form a basis for the space of solutions of the initial equation.
 - **b.** Find the general solution of tx'' (t+n)x' + nx = 0, for $n \in \mathbb{N}$, given a solution e^t .
 - **c.** Find the general solution of $(t^2 1)x'' + 4tx' + 2x = 6t$, given the particular solutions $x_1(t) = t, x_2(t) = \frac{t^2 + t + 1}{t+1}$.
 - **d.** (Factorizing diff.operators) Take an operator $D_n := \frac{d^n}{dt^n} + a_{n-1}(t)\frac{d^{n-1}}{dt^{n-1}} + \dots + a_0(t)$. Let $y(t) \neq 0$ be a solution of $D_n x = 0$. Prove: $D_n = D_{n-1} \circ \left[\frac{d}{dt} \frac{y'(t)}{t(t)}\right]$, where D_{n-1} is a differential operator of order=n-1. (We did this in the class.)
- **4. a.** Give an example of equation $\underline{x}' = A(t) \cdot \underline{x}$ for which $e^{\int_{t_0}^t A(s)ds} \cdot \underline{x}_0$ is not a solution. **b.** Suppose the matrices A(t) and $\int_{t_0}^t A(s)ds$ commute for each $t \in (a, b)$.

Prove: the (unique) solution of $\underline{x}' = A(t) \cdot \underline{x}$, $\underline{x}(t_0) = \underline{x}_0$ is given by $\underline{x}(t) = e^{\int_{t_0}^{t} A(s)ds} \underline{x}_0$.

- **c.** Let $\{A_j\}$ be some constant pairwise commuting matrices. Let $\{g_j(t)\}$ be $C^0(a, b)$. Solve the system $\underline{x}' = (\sum g_j(t)A_j)\underline{x}, \ \underline{x}(t_0) = \underline{x}_0.$
- **d.** Prove that the assumption in **b.** implies: the matrices A(t)' and $\int_{t_0}^t A(s)ds$ commute for each $t \in (a, b)$.