Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner)

Homework 7. Submission date: 25.06.2024

Questions to submit: 1.a. 1.b. 1.d. 2.b. 2.c. 3.a. 3.b. 3.d. 4.ii. 4.v. Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Consider the equation $D_n(x) = g(t)$, where $D_n = \frac{d^n}{dt^n} + a_{n-1} \frac{d^{n-1}}{dt^{n-1}} + \cdots + a_0$, with $a_i \in \mathbb{R}$.
	- **a.** Write the general solution of $x^{(4)} + 4x = \sum b_j e^{\omega_j t}$, here $\omega_j \in \mathbb{C}$, with $\omega_j = 0$ or $\omega_j^3 = -4$. **b.** Suppose $\mu \in \mathbb{C}$ is not a root of the characteristic polynomial of D_n . Prove: the equation $D_n(x) = t^k \cdot e^{\mu t}$, with $k \in \mathbb{N}$, has a solution of the form $g_k(t) \cdot e^{\mu t}$ for a polynomial $g_k(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. (Hint. It is enough to show: the operator $D_n \circ \mathbb{C}[t]_{\leq k} \cdot e^{\mu t}$ acts surjectively. And for this it is enough to verify: D_n acts injectively.)
	- c. Suppose $\mu \in \mathbb{C}$ is a root of the characteristic polynomial of D_n , of multiplicity p. Prove: the equation $D_n(x) = t^k \cdot e^{\mu t}$ has a solution of the form $t^p \cdot g(t) \cdot e^{\mu t}$ for a polynomial $g_k(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. Wiki: "Resonance".
	- **d.** Write the general solution of $x^{(4)} + 4x = b \cdot t \cdot e^{\mu t}$. (Here $b, \mu \neq 0$ are parameters.)
	- **e.** Consider the equation $D_n x = p(t) \cdot e^{\mu t}$, here $p(t) \in \mathbb{C}[t]$. What is the necessary and sufficient condition to ensure that the equation has a periodic solution? A bounded solution?
- **2.** Consider the system $\underline{x}' = f(t, \underline{x})$, with $f \in C^r((a, b) \times \mathbb{R}^n)$. We have proved: If $|\underline{x} \cdot f(t, \underline{x})| \le$ $g(t) \cdot (1 + ||\underline{x}||^2)$ then any solution extends to $C^{r+1}(a, b)$.
	- **a.** Instead of the condition $|\underline{x} \cdot f(t, \underline{x})| \leq g(t) \cdot (1 + ||\underline{x}||^2)$ one could impose $|\underline{x} \cdot f(t, \underline{x})| \leq g_0(t) +$ $g_1(t) \cdot ||\underline{x}|| + g_2(t) \cdot ||\underline{x}||^2$, for some g_0, g_1, g_2 . Prove: this condition is not weaker. Namely, this condition holds for some g_0, g_1, g_2 iff the previous condition holds for some g.
	- **b.** Suppose the bound $|\underline{x} \cdot f(t, \underline{x})| \leq g(t) \cdot (1 + \phi(||\underline{x}||^2))$ holds for a function $g(t) \in C^1(a, b)$ and a function $\phi(y) \geq 0$ satisfying: \int_0^∞ $\frac{dy}{1+\phi(y)}=\infty.$
		- **i.** Prove: any solution extends to $C^{r+1}(a, b)$. (See the hint downstairs.)
		- ii. For which function ϕ do we get the criterion proved in the class? For which functions ϕ we get a stronger criterion?
	- **c.** Consider the equation $x^{(n)} = f(t, x, ..., x^{(n-1)})$, where $f \in C^{r}((a, b) \times \mathbb{R}^{n})$. Denote $y =$ (y_0, \ldots, y_{n-1}) . Suppose the bound $|y_{n-1} \cdot f(t,y)| \leq g(t) \cdot (1+|y|^2)$ holds in $(a, b) \times \mathbb{R}^n$. Prove: any local solution extends to a global one, $x(t) \in C^{r+1}(a, b)$.
- **3. a.** (A comparison test) Consider an ODE $x' = f(t, x)$, where $f \in C^0((a, b) \times \mathbb{R}^1)$ is locally Lipschitz in x. Suppose there exist functions $x_{min}(t)$, $x_{max}(t) \in C^{1}(a, b)$ satsifying: $x'_{min}(t) \le f(t, x_{min}(t))$ and $x'_{max}(t) \ge f(t, x_{max}(t))$ for $t \in (a, b)$. Prove: any local solution with $x_{min}(t_o) < x(t_o) < x_{max}(t_o)$ extends to a global solution $x(t) \in C^1(t_o - \epsilon, b)$.
	- **b.** (Speed of separation of solutions) Consider the system $\underline{x}' = f(t, \underline{x})$ for $f \in C^0(\mathcal{U})$. Suppose $|(\underline{x}-y)\cdot (f(t,\underline{x})-f(t,y))|\leq g(t)\cdot e^{||\underline{x}-\underline{y}||^2}$ in U. Prove: any solutions $\underline{x}(t), y(t)\in C^1(a,b)$ satisfy $||\underline{x}(t) - \underline{y}(t)||^2 \le ||\underline{x}(t_0) - \underline{y}(t_0)||^2 - \ln[1 - e^{||\underline{x}(t_0) - \underline{y}(t_0)||^2} \cdot \int_{t_0}^t 2g(s)ds].$ (We assume here: $e^{\|x(t_0) - y(t_0)\|^2} \cdot \int_{t_0}^t g(s) ds < 1.$)
	- **c.** Write the general solution of the system $x' = \frac{x}{1+x}$ $\frac{x}{1+t^2} + y \cdot \sin(2t), \ y' = y \cdot \cos(t).$
	- **d.** Write the general solution of the equation $\left(\frac{d}{dt} a_1(t)\right) \circ \left(\frac{d}{dt} a_2(t)\right) x = 0$, $a_1(t), a_2(t) \in$ $C^1(a,b).$

4. Prove: **i.** $det(e^A) = e^{trace(A)}$. **ii.** $det[\mathbb{I} + \epsilon A] = 1 + \epsilon \cdot trace(A) + O(\epsilon^2)$. **iii.** $||e^A||_{op} \leq e^{||A||_{op}}$ ii. det $[\mathbb{I}+\epsilon A]=1+\epsilon\cdot trace(A)+O(\epsilon^2)$. iii. $||e^A||_{op} \leq e^{||A||_{op}}$ iv. $e^A = \lim_{k \to \infty} (\mathbb{I} + \frac{A}{k})^k$. v. If $A(t) \in GL(n, C^1(a, b))$ then $(A(t)^{-1})' = -A(t)^{-1}A'(t)A(t)^{-1}$.

 $\lim_{\alpha \to 0} \frac{1}{\alpha}$ = ||x||x||x|| = $\alpha \in \mathbb{R}$ ||x|| = $\alpha \in \mathbb{R}$ + \forall (0)).