Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner) Homework 7. Submission data: 25.06.2024

Homework 7. Submission date: 25.06.2024 Questions to submit: 1.a. 1.b. 1.d. 2.b. 2.c. 3.a. 3.b. 3.d. 4.ii. 4.v.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.**Consider the equation $D_n(x) = g(t)$, where $D_n = \frac{d^n}{dt^n} + a_{n-1}\frac{d^{n-1}}{dt^{n-1}} + \dots + a_0$, with $a_i \in \mathbb{R}$. **a.** Write the general solution of $x^{(4)} + 4x = \sum b_j e^{\omega_j t}$, here $\omega_j \in \mathbb{C}$, with $\omega_j = 0$ or $\omega_j^3 = -4$.
 - a. Write the general solution of x⁽⁴⁾ + 4x = ∑b_je^{ω_jt}, here ω_j ∈ C, with ω_j = 0 or ω_j³ = -4.
 b. Suppose μ ∈ C is not a root of the characteristic polynomial of D_n. Prove: the equation D_n(x) = t^k · e^{μt}, with k ∈ N, has a solution of the form g_k(t) · e^{μt} for a polynomial g_k(t) ∈ C[t]_{≤k} of degree k. (Hint. It is enough to show: the operator D_n ⊂ C[t]_{≤k} · e^{μt} acts surjectively. And for this it is enough to verify: D_n acts injectively.)
 - **c.** Suppose $\mu \in \mathbb{C}$ is a root of the characteristic polynomial of D_n , of multiplicity p. Prove: the equation $D_n(x) = t^k \cdot e^{\mu t}$ has a solution of the form $t^p \cdot g(t) \cdot e^{\mu t}$ for a polynomial $g_k(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. Wiki: "Resonance".
 - **d.** Write the general solution of $x^{(4)} + 4x = b \cdot t \cdot e^{\mu t}$. (Here $b, \mu \neq 0$ are parameters.)
 - e. Consider the equation $D_n x = p(t) \cdot e^{\mu t}$, here $p(t) \in \mathbb{C}[t]$. What is the necessary and sufficient condition to ensure that the equation has a periodic solution? A bounded solution?
- **2.**Consider the system $\underline{x}' = \underline{f}(t, \underline{x})$, with $\underline{f} \in C^r((a, b) \times \mathbb{R}^n)$. We have proved: If $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g(t) \cdot (1 + ||\underline{x}||^2)$ then any solution extends to $C^{r+1}(a, b)$.
 - **a.** Instead of the condition $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g(t) \cdot (1+||\underline{x}||^2)$ one could impose $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g_0(t) + g_1(t) \cdot ||\underline{x}|| + g_2(t) \cdot ||\underline{x}||^2$, for some g_0, g_1, g_2 . Prove: this condition is not weaker. Namely, this condition holds for some g_0, g_1, g_2 iff the previous condition holds for some g.
 - **b.** Suppose the bound $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g(t) \cdot (1 + \phi(||\underline{x}||^2))$ holds for a function $g(t) \in C^1(a, b)$ and a function $\phi(y) \geq 0$ satisfying: $\int_0^\infty \frac{dy}{1 + \phi(y)} = \infty$.
 - i. Prove: any solution extends to $C^{r+1}(a, b)$. (See the hint downstairs.)
 - ii. For which function ϕ do we get the criterion proved in the class? For which functions ϕ we get a stronger criterion?
 - **c.** Consider the equation $x^{(n)} = f(t, x, ..., x^{(n-1)})$, where $f \in C^r((a, b) \times \mathbb{R}^n)$. Denote $\underline{y} = (y_0, ..., y_{n-1})$. Suppose the bound $|y_{n-1} \cdot f(t, \underline{y})| \leq g(t) \cdot (1 + |\underline{y}|^2)$ holds in $(a, b) \times \mathbb{R}^n$. Prove: any local solution extends to a global one, $x(t) \in C^{r+1}(a, b)$.
- **3. a.** (A comparison test) Consider an ODE x' = f(t, x), where $f \in C^0((a, b) \times \mathbb{R}^1)$ is locally Lipschitz in x. Suppose there exist functions $x_{min}(t), x_{max}(t) \in C^1(a, b)$ satisfying: $x'_{min}(t) \leq f(t, x_{min}(t))$ and $x'_{max}(t) \geq f(t, x_{max}(t))$ for $t \in (a, b)$. Prove: any local solution with $x_{min}(t_o) < x(t_o) < x_{max}(t_o)$ extends to a global solution $x(t) \in C^1(t_o \epsilon, b)$.
 - **b.** (Speed of separation of solutions) Consider the system $\underline{x}' = f(t, \underline{x})$ for $f \in C^0(\mathcal{U})$. Suppose $|(\underline{x} \underline{y}) \cdot (\underline{f}(t, \underline{x}) \underline{f}(t, \underline{y}))| \leq g(t) \cdot e^{||\underline{x} \underline{y}||^2}$ in \mathcal{U} . Prove: any solutions $\underline{x}(t), \underline{y}(t) \in C^1(a, b)$ satisfy $||\underline{x}(t) \underline{y}(t)||^2 \leq ||\underline{x}(t_0) \underline{y}(t_0)||^2 \ln[1 e^{||\underline{x}(t_0) \underline{y}(t_0)||^2} \cdot \int_{t_0}^t 2g(s)ds]$. (We assume here: $e^{||\underline{x}(t_0) \underline{y}(t_0)||^2} \cdot \int_{t_0}^t g(s)ds < 1$.)
 - **c.** Write the general solution of the system $x' = \frac{x}{1+t^2} + y \cdot sin(2t), y' = y \cdot cos(t)$.
 - **d.** Write the general solution of the equation $\left(\frac{d}{dt} a_1(t)\right) \circ \left(\frac{d}{dt} a_2(t)\right) x = 0, \quad a_1(t), a_2(t) \in C^1(a, b).$
- **4.** Prove: **i.** $det(e^A) = e^{trace(A)}$. **ii.** $det[\mathbb{1} + \epsilon A] = 1 + \epsilon \cdot trace(A) + O(\epsilon^2)$. **iii.** $||e^A||_{op} \le e^{||A||_{op}}$. **iv.** $e^A = \lim_{k \to \infty} (\mathbb{1} + \frac{A}{k})^k$. **v.** If $A(t) \in GL(n, C^1(a, b))$ then $(A(t)^{-1})' = -A(t)^{-1}A'(t)A(t)^{-1}$.

Hint: denote $y = ||x||^2$, then one has $y' \leq g(t) \cdot (1 + \phi(y))$.