Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner) Homework 6. Submission date: 18.06.2024 Questions to submit: 1.a. 2.b. 2.c. 2.d. 3.a. 3.b. 5.c.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Consider the equation $\underline{x}' = A \cdot \underline{x} + e^{\mu t} t^k \cdot \underline{b}$, here \underline{b} is a constant vector. Prove:
	- **a.** If μ is not an eigenvalue of A then there exists a solution of the form $e^{\mu t} \cdot g(t)$, where the entries of g are polynomials of degree $\leq k$. (Hint: the presentation $g(t) = (\mu \mathbb{I} - A)^{-1} \cdot [t^k \cdot \underline{b} - g'(t)]$ determines the terms of order k in $g(t)$. How to determine the terms of order $\langle k? \rangle$
	- **b.** If μ is an eigenvalue of A then there exists a solution of the form $e^{\mu t}g(t)$, where the entries of g are polynomials of degree $\leq k + Jord.Size(A)$, here $Jord.Size.\overline{(A)}$ is the size of the maximal Jordan cell of A.
- 2. a. Write down the general (real) solutions of the equations i. $x^{(n+2)} \pm b^2 x^{(n)} = 0$. ii. x $(4) + 2x^{(3)} + 2x^{(2)} = 0.$
	- **b.** Find the condition on a, b to ensure: 0 is a stable equilibrium point of $x^{(2)} + a \cdot x' + b \cdot x = 0$.
	- c. Find an equation $x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_0x = 0$ of minimal possible order whose general solution contains the functions $sin(2t) \cdot e^t$, $cos(2t) \cdot e^{2t}$, t^2 . Explain why is this order minimal. Prove: the coefficients $\{a_i\}$ are uniquely determined.
	- **d.** Fix a finite set of pairwise distinct complex numbers $\{\lambda_k\}$ and some natural numbers $\{p_k\}$. Prove: the functions $\{t^j \cdot e^{\lambda_k t}\}_{1 \leq k \leq n}$ $0 \leq j \leq p_k$ are C-linearly independent.

(Can you do this in several different ways?)

- **e.** Prove the R-version of part d., about the R-linear independence of the functions $\{t^j e^{a_k t}$. $cos(b_k \cdot t)$, $\{t^j e^{a_k t} \cdot sin(c_k \cdot t)\}.$
- **3.** Consider the ODE $x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_0x = 0$ and the equation $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0 = 0$. a. (Dis)prove: if all the λ -roots are imaginary, simple then every solution of this ODE is periodic. **b.** (Dis)prove: if all the λ -roots are real-positive then every solution of this ODE is monotonic.
	- c. Prove: for any tuple $(a_{n-1},...,a_1)$ there exists a finite subset $S \subset \mathbb{R}$ such that for $a_0 \in \mathbb{R} \setminus S$ the space of solutions is spanned by exponents. (Hint: when does a polynomial have a multiple root?)

This phenomenon causes statements like "The solutions $t^j e^{\lambda t}$ never appear in laboratory".

4. Prove: any (finite) system of ODE's, $f(t, \underline{x}, \underline{x}', \dots, \underline{x}^{(k+1)}) = \underline{0}$, is equivalent to a system of 1'st order ODE's, $\underline{F}(t, y, y') = \underline{0}$. (Namely, every solution of f leads to a solution of \underline{F} and vice versa.)

Moreover, if the initial system $f(\ldots)$ is in the normal form/autonomic/linear/polynomial then the resulting system $\underline{F}(\ldots)$ is of this type as well.

- **5. a.** Prove: if the function $g(\underline{x}) > 0$ is continuous then the systems $\underline{x}' = f(\underline{x})$ and $\underline{x}' = g(\underline{x}) \cdot f(\underline{x})$ have the same phase potraits. (What happens for $q < 0$?)
	- **b.** Prove: the phase curves of the system $\underline{x}' = f(\underline{x})$, $\overline{f} \in C^1(\mathcal{U})$ for $\mathcal{U} \subseteq \mathbb{R}^n$, cover the whole \mathcal{U} and either coincide or do not intersect.
	- **c.** Consider the system $x' = sin(x) \cdot (e^{y^2} + x^4), y' = sin(cos(y)) \cdot (e^{x^2} + y^3)$.
		- i. Find the equilibria points.
		- ii. Prove: there exist infinity of phase curves that are parallel to \hat{y} -axis. Moreover, each of these curves is an open interval of length $\lt \pi$. (And the same for \hat{x} -axis.)
		- iii. Prove: any local solution extends (uniquely) to the global solution $x(t)$, $y(t) \in C^{\omega}(\mathbb{R})$.