Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner)

Homework 5. Submission date: 11.06.2024

Questions to submit: 1. 2. 3.a. 3.b. 4.b. 4.c. 4.e.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Define the function f(x) as $x^2 \cdot \sin \frac{1}{x^2}$ for x < 0, as \sqrt{x} for 0 < x < 1 and as $e^{-x^2} \cdot \sin(e^{x^3})$ for x > 1. (Dis)Prove:
 - **a.** f is locally Lipschitz at each point where it is defined.
 - **b.** f is Lipschitz on $(-\epsilon, \epsilon) \setminus \{0\}$.
 - **c.** f is Lipschitz on $(1 \epsilon, 1 + \epsilon) \setminus \{1\}$.
 - **d.** f is Lipschitz on $(-\infty, -1)$ and on $(1, \infty)$.
- **2.**Let $A \in Mat_{2\times 2}(\mathbb{R})$, with eigenvalues $\lambda_{\pm} = a \pm i \cdot b, b \neq 0$. Take the corresponding eigenvectors v_{\pm} . Prove: in the basis of \mathbb{R}^2 composed of $Re[v_+]$, $Im[v_+]$ the matrix becomes: $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

3.In the following cases (without solving the equations):

- i. Identify the equilibria points. When are these points (un)stable nodes/saddles?
- ii. For which λ are there (un)bounded/periodic solutions?

iii. For the cases a. and b. draw the phase portraits.

Now write down the general (real) solutions, and verify the previously obtained properties. **a.** $x' = y, y' = \lambda \cdot x$. (Distinguish between the cases $\lambda > 0, \lambda < 0$.)

b. $x' = \lambda x + y, y' = \lambda y.$ **c.** $\underline{x}' = A \cdot \underline{x}$ for $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 0 \end{bmatrix}.$

4. Consider the system of differential equations $\underline{x}' = A \cdot \underline{x}, A \in Mat_{n \times n}(\mathbb{R})$. Prove:

a. If x(t) is a solution then all its derivatives are solutions.

- **b.** If $A = A^t$ then there are no (non-constant) periodic solutions.
- c. If $A = -A^t$ then the space of solutions is spanned by periodic solutions. Does this imply that every solution is periodic?
- **d.** If A is of odd size then there exists an unbounded solution.
- e. What is the necessary and sufficient condition on A to ensure $\lim \underline{x}(t) = \underline{0}$ for each solution?
- **f.** If A is \mathbb{R} -diagonalizable and the eigenvalues have the same sign then $\underline{x} = 0$ is a nodal point. (Attracting or repelling)
- **g.** The solutions are analytic in the initial data, $x(t, t_0, x_0, A) \in C^{\omega}(\mathbb{R}_t \times \mathbb{R}_{t_0} \times \mathbb{R}_{x_0}^n \times Mat_{n \times n}(\mathbb{R})).$
- **h.** The set of equilibrium points is a vector subspace of \mathbb{R}^n . (What is the dimension?)
- **5.** Define the functions $Mat_{n\times n}(\mathbb{C}) \xrightarrow{sin,cos} Mat_{n\times n}(\mathbb{C})$ via the Taylor expansion of sin, cos. Prove:
 - **a.** These series converge absolutely, the convergence is uniform on bounded subsets of $Mat_{n\times n}(\mathbb{C})$. **b.** Prove: $e^{iA} = cos(A) + i \cdot sin(A)$. $cos(A) = \frac{e^{iA} + e^{-iA}}{2}$. $sin(A) = \frac{e^{iA} e^{-iA}}{2i}$. **c.** Prove: $sin^2(A) + cos^2(A) = \mathbb{I}$. If AB = BA then $sin(A+B) = \cdots$, $cos(A+B) = \cdots$. **d.** Compute $\frac{d}{dt}cos(At)$ and $\frac{d}{dt}sin(At)$. (Do this in two ways, as we did for $\frac{d}{dt}e^{At}$ in the lecture.)

6. Write the general solution of the system
$$\underline{x}' = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 2 & 3 \end{bmatrix} \cdot \underline{x} + \begin{bmatrix} 3e^t \\ 0 \\ 3e^{-t} \end{bmatrix}$$