Ordinary differential equations for Math (201.1.0061. Spring 2024. Dmitry Kerner) Homework 10. Submission date: 16.07.2024

Questions to submit: 1.a. 1.c.ii. 1.d. 2.a. 2.c. 3.b. 4.b. 4.c.

Either typed or in readable handwriting and scanned in readable resolution. Below we denote: $D_n x := x^{(n)} + a_{n-1}(t)x^{(n-1)} + \dots + a_0(t)x$.

- **1. a.** Find a system $\underline{x}' = A(t) \cdot \underline{x}$ whose solutions are $\underline{x}_1(t) = [e^t \cos(t), e^t \sin(t)]$ and $\underline{x}_2(t) =$ [-sin(t), cos(t)].
 - **b.** Find a linear homogeneous ODE whose space of solutions is spanned by sin_t^1 , cos_t^1 .
 - c. Suppose the space of solutions of $D_n x = 0$ is spanned by the functions $x_1(t) \dots x_n(t)$. Prove: i. If all $\{x_i(t)\}\$ are T-periodic then so are the coefficients $\{a_i(t)\}\$.

ii.
$$a_{n-1}(t) = \frac{W[x_1, \dots, x_n]'}{W[x_1, \dots, x_n]}$$
 and $a_0(t) = (-1)^n \cdot \frac{W[x_1', \dots, x_n']}{W[x_1, \dots, x_n]}$.

- **d.** Suppose e^t , sin(t), t^{17} are solutions of a linear non-homogeneous equation of 2'nd order. Write the general solution. Find the solution satisfying: x(0) = a, x'(0) = b.
- **2.** a. Let $\underline{x}(t) = x_1(t), \ldots, x_n(t)$ be a basis of the space of solutions of the equation $D_n x = 0$. Verify: $\int_{t_o}^t \frac{\overline{W(s,t)}}{W(s)} b(s) ds \text{ is a particular solution of } D_n x = b(t). \text{ Here } W(s) := W(\underline{x}(s)) \text{ is the Wronskian,}$ while $W(s,t) := det[\underline{x}(s)//\underline{x}'(s)//\dots//\underline{x}^{(n-2)}(s)//\underline{x}(t)]$ is the 'mixed Wronskian'.
 - **b.** Verify: for n = 2 the particular solution of the equation $x^{(2)} + a_1(t)x' + a_0(t)x = b(t)$ is: $\int_{t_o}^t det \left[\frac{\underline{x}(s)}{\underline{x}(t)} \right] \cdot \frac{b(s)}{W(s)} ds.$
 - c. Find the general solution of Bessel's equation $t^2x'' + tx' + (t^2 \frac{1}{4})x = 3t^{\frac{3}{2}}sin(t), t > 0$, given a particular solution of the corresponding homogeneneous equation, $x(t) = \frac{\sin(t)}{\sqrt{t}}$.
 - **d.** Take an equation $D_n x = 0$ with constant coefficients. Suppose all the roots of the characteristic polynomial of D_n are distinct, $\{\lambda_{\bullet}\}$. Prove: a solution of $D_n x = b(t)$ is $\sum_{k=1}^{n} \int_{t_o}^{\bar{t}} \frac{e^{\lambda_k(t-s)}}{\prod_{i \neq k} (\lambda_k - \lambda_i)} b(s) ds.$ (hint: Vandermonde)
- **3.** A set $x_1(t), \ldots, x_n(t)$ of solutions of $D_n x = 0$ is called 'the standard basis at t_o ' if the corresponding fundamental matrix $\mathbb{X}(t)$ satisfies $\mathbb{X}(t_o) = \mathbb{1}$.

a. Prove: the standard basis exists, is unique, and satisfies: $x_j(t) = \frac{(t-t_o)^{j-1}}{(j-1)!} + o((t-t_o)^n).$

- **b.** Let $x_1(t), \ldots, x_n(t)$ be the standard basis of $D_n x = 0$, with constant coefficients. Prove: $\int_{t_o}^t x_n(t-s+t_o)b(s)ds$ is a solution of $D_n x = b(t)$.
- **4. a.** Compute the monodromy matrix, e^{RT} , for the system $\underline{x}' = A \cdot \underline{x}$, with constant A.
 - **b.** Recall, the fundamental matrix $\mathbb{X}(t)$ of the (periodic) system $\underline{x}' = A(t) \cdot \underline{x}$ is non-unique. Prove: the monodromy matrix e^{RT} is well defined up to conjugation and does not depend on the choice of t_o .
 - c. Prove: λ is an eigenvalue of the monodromy matrix e^{RT} iff there exists a solution $\underline{x}(t)$ satisfying $x(t+T) = \lambda \cdot x(t)$.
 - **d.** Let $\underline{x}' = A(t)\underline{x}$ where A(t) is periodic with period T. Take the fundamental matrix $\mathbb{X}(t)$ satisfying: $\mathbb{X}(0) = \mathbb{I}$. Prove: $\mathbb{X}(d \cdot T) = \mathbb{X}(T)^d$.