Ordinary differential equations (201.1.0061. Spring 2024. Dmitry Kerner) Homework 0. Not for submission

Notations/conventions:

- The unit vector in j'th direction is $\hat{x}_j \in \mathbb{R}^n$. A point in the standard coordinates is $\underline{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n$.
- An open subset $\mathcal{U} \subseteq \mathbb{R}^n$. The standard sphere $\mathbb{S}^{n-1} := \{\underline{x} \mid ||\underline{x}|| = 1\} \subset \mathbb{R}^n$.
- The partial derivative $\partial_j f$. The (total) k'th order derivative at a point $f^{(k)}|_{x_0}$. Thus $f^{(1)}|_{x_o}$ is a vector, $f^{(2)}|_{x_o}$ is a (symmetric) matrix, and so on.
- Denote by $C^{k}(\mathcal{U})$ the ring of functions with continuous k'th derivative. (Here $0 \le k \le \infty$)
- Denote by $C^{\omega}(\mathcal{U})$ the ring of functions analytic on \mathcal{U} . Namely, for each $x_o \in \mathcal{U}$ the function equals (locally near x_o) to its Taylor series at x_o .
- For $[a,b] \subset \mathbb{R}^1$ denote by $C^k[a,b] \subset C^k(a,b)$ the ring of functions with finite limits $\lim_{x \to a^+} f^{(k)}|_x$, $\lim_{x \to a^+} f^{(k)}|_x$.
- $\lim_{x \to b^{-}} f^{(k)}|_{x}.$ The max-norm on $C^{0}[a, b]$ is defined by $||f|| = \max_{[a,b]} |f(x)|.$ • A function $\mathbb{R}^{n} \supseteq X \xrightarrow{f} \mathbb{R}$ is called Lipschitz if $|f(x) - f(\tilde{x})| \leq C \cdot ||x - \tilde{x}||$ for a (fixed) constant $C \in \mathbb{R}_{>0}$ and any points $x, \tilde{x} \in X$.

The function is called locally Lipschitz at $x_o \in X$ if f is Lipschitz on some neighborhood $x \in \mathcal{U} \subset X$. And "locally Lipschitz on X" means "locally Lipschitz at each point of X".

- **1. a.** Fix a function $g \in C^0[a, b]$, with $g(a) \neq 0 \neq g(b)$. For which sub-spaces of $C^0(a, b)$ does the map $f \to \int_a^b g(x) \cdot f(x) \cdot dx$ define an \mathbb{R} -linear functional?
 - **b.** Take a continuous vector valued function on a compact set $\mathbb{R}^n \supset X \xrightarrow{f} \mathbb{R}^m$. Prove: $||\int_X f(x)d^n x|| \leq \int_X ||f(x)||d^n x$.
 - c. Prove: all the norms on \mathbb{R}^{n} are equivalent. (You have seen this proof in the previous courses. Recall that it is enough to consider the restriction onto \mathbb{S}^{n-1} .)
- **2.** a. Expand $\arctan \frac{x+y}{1+x^2}$ to the Taylor power series at the point (0,0) up to the order 5.
 - **b.** Take some real numbers $0 < a_1 < \cdots < a_k$, $0 < b_1 < \cdots < b_l$ and $c_1 < \cdots < c_r$. Prove: the functions $\{sin(a_i \cdot x)\}_i, \{cos(b_i \cdot x)\}_i, \{exp(c_i \cdot x)\}_i$ are \mathbb{R} -linearly independent. (Can you prove this in several different ways?)
 - **c.** Define the function $\mathbb{R}_{>0} \xrightarrow{f} \mathbb{R}$ by $f(x) = x \cdot \sin \frac{1}{x} + \frac{\sin(x^2)}{x^2} + \frac{x \cdot \ln(x)}{1+x}$. Is it uniformly continuous?
- **3.** A function $\mathbb{R}^n \supseteq \mathcal{U} \xrightarrow{f} \mathbb{R}^1$ is called *homogeneous of order* $d \in \mathbb{R}$ if it satisfies $f(t \cdot \underline{x}) = t^d \cdot f(\underline{x}), \forall t \in \mathbb{R}_{\geq 0}$. **a.** Given a (not necessarily continuous) function on the standard sphere, $\mathbb{S}^{n-1} \xrightarrow{g} \mathbb{R}^1$, define $f(\underline{x}) := \|\underline{x}\|^d \cdot g(\frac{x}{\|x\|})$ for $\underline{x} \neq o$, and f(o) = 0. Prove: f is homogeneous of order d.
 - Give a condition (on g and d) to ensure: i. f is a polynomial. ii. $f \in C^k(\mathbb{R}^n)$.
 - **b.** Suppose $f \in C^1(\mathbb{R}^n)$ is homogeneous of order d. Prove: $\sum x_i \partial_i f = d \cdot f$.
 - **c.** Let f be homogeneous of order 0. Prove: f is a function of (n-1) variables locally at each point of $\mathbb{R}^n \setminus \{o\}$.
- **4. a.** Fix a *continuous* function $\mathbb{R}^n \supseteq X \xrightarrow{f} \mathbb{R}$. (Dis)Prove:
 - i. If f is locally Lipschitz on X then it is Lipschitz on every compact subset of X.
 - ii. If f is locally Lipschitz on X then it is uniformly continuous.
 - iii. If f is uniformly continuous on X then it is locally Lipschitz on X.
 - iv. If f is C^{∞} on X then f is Lipschitz on X.
 - v. If $f(x) = o(||x||^{1001})$, then f is locally Lipschitz at o.
 - **b.** Suppose $f \in C^1(\mathcal{U})$ for a convex set $\mathcal{U} \subseteq \mathbb{R}^n$. Prove: f is Lipschitz on \mathcal{U} iff f' is bounded.
 - **c.** Define $\mathcal{U} \subset \mathbb{R}^2$ in polar coordinates, by 1 < r < 2, $\phi \in (0, 2\pi)$. Define the function $\mathcal{U} \xrightarrow{f} (0, 2\pi)$ by $f(r, \phi) = \phi$. Prove: $f \in C^1(\mathcal{U})$, with bounded derivative, but f is not Lipschitz on \mathcal{U} .
 - **d.** The standard confusion is to define: "A function $\mathbb{R}^n \supseteq X \xrightarrow{f} \mathbb{R}$ is called Lipschitz near $x_0 \in X$ if $|f(x) f(x_0)| \leq C \cdot ||x x_0||$, for a constant $C \in \mathbb{R}_{>0}$ and any $x \in X$ close to x_0 ." In which sense this is wrong?

- **5.** a. For which constants $0 < \alpha, \beta$ does the series $\sum_{n = \frac{1}{n^{\alpha} \cdot \ln^{\beta}(n)}} \frac{1}{n^{\alpha} \cdot \ln^{\beta}(n)}$ converge?
 - **b.** Prove: $C^0[a, b]$ is a complete vector space (for the max-norm).
 - **c.** Let $\{f_n\}_n \subset C^0[a, b]$ be a Cauchy sequence of functions (for the max-norm on $C^0[a, b]$). Prove: if x_n is a Cauchy sequence on [a, b] then the sequence $f_n(x_n)$ converges. Moreover, $\exists \lim_{m,n\to\infty} f_n(x_m)$.
 - **d.** Take a sequence of continuous functions $\{f_n\}_n \subset C^0(X)$. Prove: if the series $\sum f_n$ converges uniformly on X then the limit is a continuous function. (Do not just cite the well-known theorem, write the actual proof.)
 - e. Let $\{[a,b] \xrightarrow{f_n} \mathbb{R}\}$ be a sequence of monotonic functions. Suppose $\{f_n\}$ converges pointwise to a continuous function. Prove: the convergence is uniform. Is the monotonicity necessary here?
 - **f.** Given a Rieman-integrable function $[a, b] \xrightarrow{f_0} \mathbb{R}$, define the sequence of functions by $f_{k+1}(x) := \int_a^x f_k(t)dt$. Prove: $\{f_k\}$ converges uniformly. And find the limit. Do the same question for the sequence $f_{k+1}(x) := C + \int_a^x f_k(t)dt$, for a constant $C \in \mathbb{R}$.
- **6.** a. Let $A \in Mat_{n \times n}(\mathbb{R})$ and suppose v_1, \ldots, v_k are eigenvectors with pairwise distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Prove: v_1, \ldots, v_k are linearly independent.
 - **b.** Prove: $det[\mathbb{1} + t \cdot A] = 1 + t \cdot trace(A) + O(t^2)$.
 - **c.** Let $A = \{a_{ij}(t)\} \in Mat_{n \times n}$, here $a_{ij}(t)$ are differentiable functions of one variable. Prove:

$$det[A]' = det \begin{bmatrix} --a_{1\bullet}(t)' - - \\ --a_{2\bullet}(t) - - \\ \dots \end{bmatrix} + det \begin{bmatrix} --a_{1\bullet}(t) - - \\ --a_{2\bullet}(t)' - - \\ --a_{3\bullet}(t) - - \\ \dots \end{bmatrix} + \dots + det \begin{bmatrix} --a_{1\bullet}(t) - - \\ \dots \\ --a_{n\bullet}(t)' - - \end{bmatrix}$$

- 7. Define the map $Mat_{n\times n}(\mathbb{R}) \xrightarrow{\phi} \mathbb{R}^{n^2}$ by $\phi(A) = \{a_{ij}\}$ (the long vector of all the matrix entries). Define the norm on $Mat_{n\times n}(\mathbb{R})$ by $||A|| = \sqrt{trace(A \cdot A^t)}$. (This is not the operator norm.) Prove: this norm is induced from the standard norm on \mathbb{R}^{n^2} , i.e. $||A|| = ||\phi(A)||$. Conclude: ϕ is an isomorphism of normed vector spaces. Thus we can speak of C^k -functions $Mat_{n\times n}(\mathbb{R}) \to \mathbb{R}$, for $0 \le k \le \infty, \omega$. **a.** Prove: the following functions are C^{ω} .
 - i. $Mat_{n \times n}(\mathbb{R}) \xrightarrow{trace, det} \mathbb{R}$. ii. The coefficients $\{c_j(A)\}$ of the characteristic polynomial of A.
 - **b.** Prove: the matrix product, $Mat_{n \times n}(\mathbb{R}) \times Mat_{n \times n}(\mathbb{R}) \to Mat_{n \times n}(\mathbb{R})$, $(A, B) \to A \cdot B$, is a C^{ω} -function. Prove: the inverse of a matrix, $GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$, $A \to A^{-1}$, is a C^{ω} -function.
 - c. Let $\Sigma_{diag} \subset Mat_{n \times n}(\mathbb{R})$ be the subset of all the matrices that are diagonalizable over \mathbb{C} . (i.e. $U \cdot A \cdot U^{-1}$ is diagonal for some $U \in GL(n, \mathbb{C})$) Prove: any matrix whose eigenvalues are pairwise distinct complex numbers belongs to the interior $int(\Sigma_{diag})$. (You can use the fact: if all the complex roots of a polynomial are distinct then locally they are C^{∞} -functions of the coefficients of the polynomial.)
 - **d.** Is $Mat_{n \times n}(\mathbb{R}) \setminus \Sigma_{diag}$ a closed subset of $Mat_{n \times n}(\mathbb{R})$? (Hint: look at $Mat_{2 \times 2}(\mathbb{R})$)
- 8. Define the map $Mat_{n\times n}(\mathbb{R}) \xrightarrow{exp} Mat_{n\times n}(\mathbb{R})$ by $exp(A) = \sum_{j=0}^{\infty} \frac{A^j}{j!}$. (Convention: $A^0 = \mathbb{I}$)
 - **a.** Compute exp(A) for a diagonal matrix. (In particular verify that the series converges)
 - Compute exp(A) for $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and for $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
 - **b.** Prove: the power series of exp(A) converges absolutely, and the convergence is uniform on compact subsets of $Mat_{n\times n}(\mathbb{R})$. You can use $||A \cdot B|| \leq ||A|| \cdot ||B||$ (follows from Cauchy-Schwarz inequality).
 - c. Consider A as a complex matrix and take its Jordan form, $A = U^{-1}(D_A + C_A)U$, where $U \in GL(n, \mathbb{C})$, D_A is diagonal and C_A is strictly upper-triangular (corresponding to the Jordan cell structure). Verify: $C_A^n = \mathbb{O}$ and $D_A \cdot C_A = C_A \cdot D_A$.

Prove: $exp(A) = U^{-1} \cdot exp(D_A) \cdot (\sum_{k=0}^{n} \frac{C_A^k}{k!}) \cdot U$. (You will have to open the brackets/to change the order of summation in the series. Justify these steps.)

- **d.** Prove: if A, B commute then exp(A + B) = exp(A)exp(B).
- **e.** Fix some $A \in Mat_{n \times n}(\mathbb{R})$ and define the "path" $\mathbb{R}^1 \xrightarrow{\gamma} Mat_{n \times n}(\mathbb{R})$, by $\gamma(t) = exp(t \cdot A)$. Compute $\frac{d\gamma}{dt}$. **f.** Can you define the function $ln(\mathbb{I} + A)$ and establish its (corresponding) properties?