## Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 8. Submission date: 21.05.2021 Questions to submit: 2.a. 2.c. 3.b. 3.c. 4.b. 5.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.



1. Prove: any (finite) system of ODE's,  $\underline{f}(t, \underline{x}, \underline{x}', \dots, \underline{x}^{(k+1)}) = \underline{0}$ , is equivalent to a system of 1'st order ODE's,  $\underline{F}(t, \underline{y}, \underline{y}') = \underline{0}$ . (Namely, every solution of  $\underline{f}$  leads to a solution of  $\underline{F}$  and vice versa.)

Moreover, if the initial system  $\underline{f}(...)$  is in the normal form/autonomic/linear/polynomial then the resulting system  $\underline{F}(...)$  is of this type as well.

- **2. a.** Prove: if the function  $g(\underline{x}) > 0$  is continuous then the systems  $\underline{x}' = \underline{f}(\underline{x})$  and  $\underline{x}' = g(\underline{x}) \cdot \underline{f}(\underline{x})$  have the same phase potraits. (What happens for g < 0?)
  - **b.** Prove: the phase curves of the system  $\underline{x}' = \underline{f}(\underline{x}), \underline{f} \in C^1(\mathcal{U})$  for  $\mathcal{U} \subseteq \mathbb{R}^n$ , cover the whole  $\mathcal{U}$  and either coincide or do not intersect.
  - **c.** Consider the system  $x' = sin(x) \cdot (e^{y^2} + x^4), y' = sin(cos(y)) \cdot (e^{x^2} + y^3).$ 
    - i. Find the equilibria points.
    - ii. Prove: there exist infinity of phase curves that are parallel to  $\hat{y}$ -axis. Moreover, each of these curves is an ope interval of length  $< \pi$ . (And the same for  $\hat{x}$ -axis.)
    - iii. Prove: any local solution extends (uniquely) to the global solution  $x(t), y(t) \in C^{\omega}(\mathbb{R})$ .
- **3. a.** Verify:  $e^{\underline{a}\cdot\nabla}f(\underline{x}) = f(\underline{x} + \underline{a})$ , here  $\nabla = (\partial_{x_1}, \ldots, \partial_{x_n})$ .
  - **b.** Write down the Taylor expansion of a solution  $\underline{x}(t)$  of  $\underline{x}' = A \cdot \underline{x}$  using the general formula for Taylor power series, as was given in the class. Verify that you get  $\underline{x}(t) = e^{A(t-t_0)} \cdot \underline{x}_0$ .
  - **c.** Let  $\underline{x}(t)$  be the solution of  $\underline{x}' = A(t) \cdot \underline{x}$ ,  $\underline{x}(t_0) = \underline{x}_0$ . Compute the Taylor expansion of  $\underline{x}(t)$  up to order 3. (Attention, the matrices A(t), A'(t) do not necessarily commute.)
- **4.** Consider the system  $\underline{x}' = \underline{f}(t, \underline{x})$ , with  $\underline{f} \in C^r((a, b) \times \mathbb{R}^n)$ . We have proved: If  $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g(t) \cdot (1 + ||\underline{x}||^2)$  then any solution extends to  $C^{r+1}(a, b)$ .
  - **a.** Instead of  $|\underline{x} \cdot \underline{f}(t,\underline{x})| \leq g(t) \cdot (1+||\underline{x}||^2)$  one could take the condition  $|\underline{x} \cdot \underline{f}(t,\underline{x})| \leq g_0(t) + g_1(t) \cdot ||\underline{x}|| + g_2(t) \cdot ||\underline{x}||^2$ , for some  $g_0, g_1, g_2$ . Prove: this condition is not essentially weaker. Namely, this condition holds for some  $g_0, g_1, g_2$  iff the previous condition holds for some g.
  - **b.** Suppose the bound  $|\underline{x} \cdot \underline{f}(t,\underline{x})| \leq g(t) \cdot (1 + \phi(||\underline{x}||^2))$  holds for some function g(t) and a function  $\phi(y) \geq 0$  satisfying:  $\int_0^\infty \frac{dy}{1+\phi(y)} = \infty$ . Prove: any solution extends to  $C^{r+1}(a,b)$ . For which function  $\phi$  do we get the criterion proved in the class? For which functions  $\phi$  we get a stronger criterion?
- **5.** a. Let  $A(t) \in Mat_{n \times n}(C^r(\mathbb{R}))$ , for  $1 \leq r \leq \infty, \omega$ . Prove: any local solution of  $\underline{x}' = A(t) \cdot \underline{x}$  extends (uniquely) to a global solution  $\underline{x}(t) \in C^{r+1}(\mathbb{R})$ .
  - **b.** Let  $\underline{x}(t), \underline{y}(t)$  be solutions of  $\underline{x}' = A(t) \cdot \underline{x}$ . Prove:  $||\underline{x}(t) \underline{y}(t)|| \le ||\underline{x}(t_0) y(t_0)|| \cdot e^{\int_{t_0}^t ||A(s)||_{op} ds}$ .
  - **c.** Consider the system  $\underline{x}' = f(t, \underline{x})$  for  $f \in C^0(\mathcal{U})$ . Suppose  $|(\underline{x} \underline{y}) \cdot (\underline{f}(t, \underline{x}) \underline{f}(t, \underline{y}))| \leq g(t) \cdot e^{||\underline{x} \underline{y}||^2}$  in  $\mathcal{U}$ . Prove: any solutions  $\underline{x}(t), \underline{y}(t) \in C^1(a, b)$  satisfy  $|\underline{x}(t) \underline{y}(t)|^2 \leq |\underline{x}(0) \underline{y}(0)|^2 \ln\left(1 e^{|\underline{x}(0) \underline{y}(0)|^2} \cdot \int_{t_0}^t g(s)ds\right)$ . (We assume here  $e^{|\underline{x}(0) \underline{y}(0)|^2} \cdot \int_{t_0}^t g(s)ds < 1$ .)