Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 6. Submission date: 29.04.2021 Questions to submit: 1. 2.b. 2.c. 2.f. 2.g. 3.b. 3.e. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1. Prove: if $A \in Mat_{n \times n}(\mathbb{R})$ is \mathbb{C} -diagonalizable then A is \mathbb{R} -conjugate to a (real) block-diagonal matrix, with blocks of size ≤ 2 . Moreover, each 2×2 block can be assumed in the form $\begin{bmatrix} a & -b \end{bmatrix}$

$$b$$
 a

(Hint: the non-real eigenvectors of A come in conjugate pairs. But we want a real basis, \ldots)

- **2. a.** Prove: the functions $||A|| = \sqrt{trace(A^t \cdot \overline{A})}, \quad ||A||_{op} := \sup_{||v|| \neq 0} \frac{||Av||}{||v||}$ define norms on $Mat_{n \times n}(\mathbb{R})$ and $Mat_{n \times n}(\mathbb{C})$. Moreover, $||A \cdot B||_{op} \leq ||A||_{op} \cdot ||B||_{op}$.

 - b. Prove: the norms || * ||, || * ||_{op} are equivalent. Prove: these normed spaces are complete.
 c. We have defined e^A := ∑_{k=0}[∞] A^k/k!. Prove: this series converges absolutely, and the convergence is uniform on bounded subsets of Mat_{n×n}(ℂ).
 - d. Solve questions 7,8 in homework 0.
 - **e.** Prove: if $e^{At}e^{Bt} = e^{(A+B)t}$ holds for all $t \in (-\epsilon, \epsilon)$ then AB = BA.
 - **f.** Prove: if $e^A = \mathbb{I}$ then A is \mathbb{C} -diagonalizable. What are the possible eigenvalues?
 - **g.** Prove: there exists continuum of 2×2 matrices satisfying $e^{A} = 1$ and $det(t 1 A) = t^{2} + 4\pi^{2}$.
- **3. a.** Take the unit ball $Ball_1(\mathbb{O})_{op} := \{A \mid ||A||_{op} < 1\} \subset Mat_{n \times n}(\mathbb{C})$. Prove: if $A \in Ball_1(\mathbb{O})_{op}$ then $\mathbb{I} + A \in GL(n, \mathbb{C})$.
 - **b.** For a marix $A \in Ball_1(\mathbb{O})_{op}$ define $ln(\mathbb{I} + A) := \sum_{k=1}^{\infty} \frac{(-1)^{k+1}A^k}{k}$. Prove: the series converges absolutely, and the convergence is uniform on compact subsets of $Ball_1(\mathbb{O})_{op}$.
 - c. Prove: $exp(ln(\mathbb{I} + A)) = \mathbb{I} + A = ln(e^{(\mathbb{I} + A)})$ for every $A \in Ball_1(\mathbb{O})$. (No long computations are needed here.) Any contradiction to question 2.g?
 - **d.** Prove: if AB = BA and $A, B, A + B + AB \in Ball_1(\mathbb{O})_{op}$ then $ln[(\mathbb{I} + A)(\mathbb{I} + B)] =$ $ln(\mathbb{I} + A) + ln(\mathbb{I} + B)$. In particular, $ln[(\mathbb{I} + A)^k] = k \cdot ln(\mathbb{I} + A)$ for every $k \in \mathbb{Z}$.
 - e. Compute $\frac{d}{dt} ln(\mathbb{I} + At)$. (Do this in two ways, as we did for $\frac{d}{dt}e^{At}$ in the lecture.)
- **4.** Define the functions $Mat_{n \times n}(\mathbb{C}) \xrightarrow{sin,cos} Mat_{n \times n}(\mathbb{C})$ via the Taylor expansion of sin, cos. Prove: a. These series converge absolutely, and the convergence is uniform on bounded subsets of
 - $Mat_{n\times n}(\mathbb{C}).$

 - **b.** Prove: $e^{iA} = cos(A) + i \cdot sin(A)$. $cos(A) = \frac{e^{iA} + e^{-iA}}{2}$. $sin(A) = \frac{e^{iA} e^{-iA}}{2i}$. **c.** Prove: $sin^2(A) + cos^2(A) = \mathbb{I}$. If AB = BA then $sin(A+B) = \cdots$, $cos(A+B) = \cdots$. **d.** Compute $\frac{d}{dt}cos(At)$ and $\frac{d}{dt}sin(At)$. (Do this in two ways, as we did for $\frac{d}{dt}e^{At}$ in the lecture.)