Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 5. Submission date: 23.04.2021 Questions to submit: 1.a. 2.c. 3.c. 3.f. 3.h. 4. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1. a.** Prove: the local solution of the IVP $x' = sin \frac{101-t^2}{101-x^2}$, x(2) = 3 extends to $x(t) \in C^{\omega}(-5,9)$. **b.** Prove: $x(t) \in C^1$ is a solution of the IVP x' = f(t,x), $x(t_0) = x_0$ iff x(t) is a solution of the integral equation $x = x_0 + \int_{t_0}^t f(s, x) ds$.
 - i. Prove: for any sequence of constants $\{c_j\}_{j\in\mathbb{Z}}$ there exists an analytic solution of $x' = 1 + x^2$ c. that satisfies $x(\frac{\sqrt{2}}{\ln(3)} + \pi j) = c_j$. Any contradiction to the uniqueness theorem?
 - ii. Write down Picard's approximation $x_3(t)$ for the IVP $x' = 1 + x^2$, $x(0) = x_0$. Prove: $x_k(t) \in C^{\omega}(\mathbb{R})$ for each $k \in \mathbb{N}$. Does this contradict the explosion of the solution at finite time?

Prove: $x_k(t)$ converges to the solution for $|t| \leq \frac{1}{2x_0+2\sqrt{1+x_0^2}}$.

- 2. Let $\{x_k(t)\}\$ be Picard's approximations for the IVP $x' = f(t, x), x(t_0) = x_0$, with $|f(t, x) t_0|$ $\begin{aligned} f(t,y) &| \leq L \cdot |x-y| \text{ and } |f(t,x)| \leq L \cdot C \text{ on } \mathcal{U}. \text{ Prove:} \\ \mathbf{a.} \; |x_{k+1}(t) - x_k(t)| \leq \frac{C \cdot L^{k+1} \cdot |t-t_0|^{k+1}}{(k+1)!} \text{ and } |x(t) - x_k(t)| \leq \frac{C \cdot L^k \cdot |t-t_0|^k}{k!}, \text{ for } t \text{ near } t_0. \end{aligned}$ $\begin{aligned} \mathbf{b.} \text{ The series } x_m(t) + \sum_{k=m}^{\infty} [x_{k+1}(t) - x_k(t)] \text{ converges to the solution } x(t). \\ \mathbf{c.} \text{ If } f \in C^r(\mathcal{U}), \text{ for } r \leq \infty, \omega, \text{ then } x_k(t) \in C^{r+1} \text{ for } k \geq 1. \text{ Moreover, if } x_k(t) \Rightarrow x(t) \text{ (uniformly)} \end{aligned}$

 - on $[t_0 \epsilon, t_0 + \epsilon]$ then $x_k(t)^{(i)} \rightrightarrows x(t)^{(i)}$ on $[t_0 \epsilon, t_0 + \epsilon]$, for all $i \le r$.
- **3.** Let (X, d) be a metric space.
 - **a.** Prove: any convergent sequence is a Cauchy sequence, and the limit is unique.
 - **b.** Suppose (X, d) is complete. Prove: a subspace $Y \subset X$ is complete iff Y is closed.
 - c. Give a metric on X = (-1, 1) such that (X, d) is complete. (Does this contradict part b.?)
 - **d.** For a subset $X \subseteq \mathbb{R}^n$ consider $C^0(X)$, with sup-norm. Prove: $C^0(X)$ is a complete normed space.
 - **e.** Suppose d_1, d_2 are equivalent metrics. Prove: (X, d_1) is complete iff (X, d_2) is complete.
 - f. Give an example of a non-complete metric space and a contractive map without fixed points.
 - **g.** Let $\mathcal{U} \subseteq \mathbb{R}^n$ be convex, open, and suppose the map $\mathcal{U} \xrightarrow{f} \mathcal{U}$ is C^1 . Suppose $||f'||_{\frac{1}{2}}$ (the operator norm). Prove: the equation f(x) = x has a solution on \mathcal{U} .
 - **h.** Can the assumption in the fixed point theorem be weakened to " $d(\Psi(x),\Psi(y)) < d(x,y)$ for $x \neq y$ "?
- 4. Define the function f(x) as $x^2 \cdot \sin \frac{1}{x^2}$ for x < 0, as \sqrt{x} for 0 < x < 1 and as $e^{-x^2} \cdot \sin(e^{x^3})$ for x > 1. (Dis)Prove:
 - **a.** f is locally Lipschitz at each point where it is defined.
 - **b.** f is Lipschitz on $(-\epsilon, \epsilon) \setminus \{0\}$.
 - c. f is Lipschitz on $(1 \epsilon, 1 + \epsilon) \setminus \{1\}$.
 - **d.** f is Lipschitz on $(-\infty, -1)$ and on $(1, \infty)$.