Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 5. Submission date: 23.04.2021 Questions to submit: 1.a. 2.c. 3.c. 3.f. 3.h. 4.

Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1. a.** Prove: the local solution of the IVP $x' = \sin \frac{101-t^2}{101-x^2}$ $\frac{101-t^2}{101-x^2}$, $x(2) = 3$ extends to $x(t) \in C^{\omega}(-5, 9)$.
	- **b.** Prove: $x(t) \in C^1$ is a solution of the IVP $x' = f(t, x)$, $x(t_0) = x_0$ iff $x(t)$ is a solution of the integral equation $x = x_0 + \int_{t_0}^t f(s, x) ds$.
	- **c.** i. Prove: for any sequence of constants $\{c_j\}_{j\in\mathbb{Z}}$ there exists an analytic solution of $x'=1+x^2$ that satisfies $x(\frac{\sqrt{2}}{\ln(3)} + \pi j) = c_j$. Any contradiction to the uniqueness theorem? √
		- ii. Write down Picard's approximation $x_3(t)$ for the IVP $x' = 1 + x^2$, $x(0) = x_0$. Prove: $x_k(t) \in C^{\omega}(\mathbb{R})$ for each $k \in \mathbb{N}$. Does this contradict the explosion of the solution at finite time?

Prove: $x_k(t)$ converges to the solution for $|t| \leq \frac{1}{2x_0 + 2\sqrt{1+x_0^2}}$.

2. Let $\{x_k(t)\}\$ be Picard's approximations for the IVP $x' = f(t, x)$, $x(t_0) = x_0$, with $|f(t, x) - f(t_0)|$ $|f(t, y)| \leq L \cdot |x - y|$ and $|f(t, x)| \leq L \cdot C$ on \mathcal{U} . Prove:

- **a.** $|x_{k+1}(t) x_k(t)| \leq \frac{C \cdot L^{k+1} \cdot |t-t_0|^{k+1}}{(k+1)!}$ and $|x(t) x_k(t)| \leq \frac{C \cdot L^k \cdot |t-t_0|^k}{k!}$ $\frac{t-t_0}{k!}$, for t near t_0 .
- **b.** The series $x_m(t) + \sum_{k=m}^{\infty} [x_{k+1}(t) x_k(t)]$ converges to the solution $x(t)$. c. If $f \in C^{r}(\mathcal{U})$, for $r \leq \infty, \omega$, then $x_k(t) \in C^{r+1}$ for $k \geq 1$. Moreover, if $x_k(t) \Rightarrow x(t)$ (uniformly)

on $[t_0 - \epsilon, t_0 + \epsilon]$ then $x_k(t)^{(i)} \rightrightarrows x(t)^{(i)}$ on $[t_0 - \epsilon, t_0 + \epsilon]$, for all $i \leq r$.

3. Let (X, d) be a metric space.

a. Prove: any convergent sequence is a Cauchy sequence, and the limit is unique.

- **b.** Suppose (X, d) is complete. Prove: a subspace $Y \subset X$ is complete iff Y is closed.
- c. Give a metric on $X = (-1, 1)$ such that (X, d) is complete. (Does this contradict part b.?)
- **d.** For a subset $X \subseteq \mathbb{R}^n$ consider $C^0(X)$, with sup-norm. Prove: $C^0(X)$ is a complete normed space.
- e. Suppose d_1, d_2 are equivalent metrics. Prove: (X, d_1) is complete iff (X, d_2) is complete.
- f. Give an example of a non-complete metric space and a contractive map without fixed points.
- **g.** Let $\mathcal{U} \subseteq \mathbb{R}^n$ be convex, open, and suppose the map $\mathcal{U} \stackrel{f}{\to} \mathcal{U}$ is C^1 . Suppose $||f'||_2^1$ (the operator norm). Prove: the equation $f(x) = x$ has a solution on \mathcal{U} .
- **h.** Can the assumption in the fixed point theorem be weakened to " $d(\Psi(x)\Psi(y)) \leq d(x,y)$ for $x \neq y$ "?
- **4.** Define the function $f(x)$ as $x^2 \cdot \sin \frac{1}{x^2}$ for $x < 0$, as \sqrt{x} for $0 < x < 1$ and as $e^{-x^2} \cdot \sin(e^{x^3})$ for $x > 1$. (Dis)Prove:
	- **a.** f is locally Lipschitz at each point where it is defined.
	- **b.** f is Lipschitz on $(-\epsilon, \epsilon) \setminus \{0\}$.
	- c. f is Lipschitz on $(1 \epsilon, 1 + \epsilon) \setminus \{1\}.$
	- **d.** f is Lipschitz on $(-\infty, -1)$ and on $(1, \infty)$.