Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 4. Submission date: 09.04.2021 Questions to submit: 1.b. 1.d. 2.a. 2.d. 2.f. 4.a. 4.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1. a.** Prove: the solutions of $x' = e^{x^2} t$ have no local minima. (\exists at least two different solutions.)
 - **b.** Prove: every local solution of $x' = \sin^2(t) \cdot e^{t \cdot \cos(x)}$ extends (uniquely) to $x(t) \in C^{\omega}(\mathbb{R})$, this global solution has infinite number of critical points, and all the critical points are flexes (i.e. neither maxima nor minima).
 - **c.** Prove: the local solution of $x' = \frac{(x-1)sin(t \cdot x)}{t^2 + x^2 + 1}$, $x(0) = \frac{1}{2}$ extends (uniquely) to the global solution, $x(t) \in C^{\omega}(\mathbb{R})$. Moreover it satisfies: 0 < x(t) < 1.
 - **d.** Prove: the IVP $x' = \sum_{m=1}^{\infty} \frac{\sin(m \cdot x) \cdot \cos(m \cdot t)}{m^{\sqrt{5}}}, x(t_0) = x_0$ admits the unique local solution for any $(t_0, x_0) \in \mathbb{R}^2$. Moreover, this solution extends (uniquely) to $x(t) \in C^{\omega}(\mathbb{R})$.
- **2. a.** Prove: the sums/products in $\mathbb{R}[[\underline{x}]], C^{\omega}(\mathcal{U})$ are well defined. (Therefore $\mathbb{R}[[\underline{x}]], C^{\omega}(\mathcal{U})$ are commutative rings.) For $C^{\omega}(\mathcal{U})$ don't forget to check: the product of locally convergent series is locally convergent.
 - **b.** Strengthen the statement of Abel's theorem for the power series $\sum a_{\underline{m}} \underline{x}^{\underline{m}}$ to: "If for some $\underline{x}_0 \in \mathbb{R}^n \text{ the set } \left\{ |a_{\underline{m}} \underline{x}_0^{\underline{m}}| \right\}_{\underline{m}} \text{ is 'sub-exponentially' bounded, i.e. } \lim_{|\underline{m}| \to \infty} \frac{\overline{\ln(1 + |a_{\underline{m}} \underline{x}_0^{\underline{m}}|)}}{|\underline{m}|} = 0, \text{ then } n = 0,$
 - c. Suppose the series $\sum a_m \underline{x}^m$ converges uniformly on $\mathcal{U} \subset \mathbb{R}^n$. Prove: $\partial_{x_i} \sum a_m \underline{x}^m =$
 - $\sum_{i=1}^{n} a_{\underline{m}} \partial_{x_j}(\underline{x}^{\underline{m}}) \text{ and } \int (\sum_{i=1}^{n} a_{\underline{m}} \underline{x}^{\underline{m}}) dx_j = \sum_{i=1}^{n} a_{\underline{m}} (\int \underline{x}^{\underline{m}} dx_j).$ **d.** Tthe set of convergence of a series is defined by $\mathfrak{S} := \{\underline{x} | \sum_{i=1}^{n} a_{\underline{m}} \underline{x}^{\underline{m}} \text{ converges}\} \subseteq \mathbb{R}^n.$
 - **i.** Find \mathfrak{S} for $\sum c_m (x^a y^b)^m$, here $a, b \in \mathbb{N}$, the sequence $\overline{\{c_m\}}$ is bounded and $c_m \neq 0$. Among all the open boxes $(-x_0, x_0) \times (-y_0, y_0) \subset \mathfrak{S}$ does there exist "the largest box"? Namely, does there exist an open box that contains all the other boxes lying inside \mathfrak{S} ?
 - ii. Recall that for n = 1 one has $(-R, R) \subseteq \mathfrak{S} \subseteq [-R, R]$, where R is the radius of convergence. For n > 1 we try to establish weaker properties. (Dis)Prove:

 - S⊆ Int(S) (the closure of the interior); (Hint: f(x₁, x₂) = x₁/(1-x₂))
 S is of "star-type", i.e. for any x ∈ S the segment [o, x] ⊂ ℝⁿ lies in S.
 - e. Why is the expansion $Taylor_{t_0}[f]$ presented as $e^{(t_1-t_0)\frac{d}{dt}}f|_{t=t_1}$ and not just $e^{(t-t_0)\frac{d}{dt}}f$? **f.** Let x(t) be the (local) solution of $x' = e^{tx^2}$, x(0) = 0. Find $Taylor_0[x(t)]$ up to order 6.
- **3.** Define the distance between two sets $S_1, S_2 \subset \mathbb{R}^n$ by $d(S_1, S_2) := inf\{d(s_1, s_2) | s_i \in S_i\}$. Prove: **a.** d(x, S) = 0 iff $x \in \overline{S}$. (Give an example with $x \notin S$.)
 - **b.** If S is closed then d(x, S) = d(x, s) for some $s \in S$. (What can happen if S is not closed?) **c.** If $S_1, S_2 \subset \mathbb{R}^n$ are bounded then $d(S_1, S_2) = 0$ iff $\overline{S_1} \cap \overline{S_2} \neq \emptyset$.
 - Give an example of bounded sets with $S_1 \cap S_2 = \emptyset$ but $d(S_1, S_2) = 0$.
 - Give an example of unbounded sets with $\overline{S_1} \cap \overline{S_2} = \emptyset$ but $d(S_1, S_2) = 0$.
 - **d.** If S_1, S_2 are compact then there exist $s_1 \in S_1, s_2 \in S_2$ such that $d(s_1, s_2) = d(S_1, S_2)$.
- 4. a. (Comparison test) Consider two equations $x' = f_i(t, x), i = 1, 2$ and their solutions $x_i(t)$, both defined on $[t_0, t_1)$. Suppose $f_1(t, x) \ge f_2(t, x)$ for every $(t, x) \in \mathcal{U}$ and $x_1(t_0) \ge x_2(t_0)$. Prove: $x_1(t) \ge x_2(t)$ on $[t_0, t_1)$.
 - **b.** Prove: the local solution of 2.f extends (uniquely) to $x(t) \in C^{\omega}(-\infty, \epsilon)$ but explodes (in finite time) on the interval $(\epsilon, 2)$.