Ordinary differential equations for Math

(201.1.0061. Spring 2021. Dmitry Kerner)

Homework 3. Submission date: 02.04.2021

Questions to submit: 1.b. 2.i. 2.iii. 2.v. 4.c. 5.a. 6.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- 1. The Bernoulli equation, $x'=g(t)x+h(t)x^{n+1},\ g,h\in C^0(a,b),\ n\neq 0,-1,$ is important for the fluid transition between two reservoirs. The standard approach is to convert it to a linear equation, by substituon $x = z^k$ near a point $x_0 \neq 0$.
 - **a.** Find the needed k. (Address both cases $x_0 > 0$, $x_0 < 0$.)
 - **b.** Solve the IVP: $x' = x \cdot tan(t) + x^4 \cdot cos(t)$, $x(\pi) = -1$.
- 2. In the following cases write the general solution (at least in the form F(x,t) = const). Draw the integral curves (you can use any software). For which initial conditions the local solution exists/is unique? What are the singular points of these curves (the points with $grad(F) = \vec{0}$)? i. $x' = \frac{2t+3t^2x}{3x^2-t^3}$ ii. $x' = \frac{2x}{3t} + \frac{2t}{x}$ iii. $3t^2x + x^2 + 2t^3x' + 3tx \cdot x' = 0$ iv. $x' = x(1+xe^t)$ v. $tx' - 2t^2\sqrt{x} = 4x$

- **3.** Take two linear functions $l_i(t,x) = a_i t + b_i x c_i$, i = 1, 2. Consider the equation $x' = \frac{l_2(t,x)}{l_1(t,x)}$.
 - **a.** Suppose the lines $\{l_i(t,x)=0\}\subset\mathbb{R}^2$ are not parallel. Shift the coordinates $t\to t-c_t$, $x \to x - c_x$ to move the line intersection to the origin. In the new coordinates the equation becomes homogeneous. Write the details. Solve the IVP: $x' = \frac{4x-2t-6}{x+t-3}$, x(2) = 2.
 - **b.** If the two lines are parallel (but do not coincide) then change the coordinates $x \to x c \cdot t$ to get an autonomous equation. Write the details. Write the general solution of the equation $x' = \frac{t-x-1}{t-x-2}$.
- **4.** For a differentiable function $\mathbb{R}^n \supseteq \mathcal{U} \stackrel{F}{\to} \mathbb{R}$ define the total differential $dF := \sum_j \partial_j F \cdot dx_j$.
 - **a.** Is xdy ydx the total differential of a C^2 -function?

 - **b.** Prove: if $\sum a_j \cdot dx_j$ is the total differential of a C^2 function then $\partial_j a_i = \partial_i a_j$ for all i, j. **c.** Prove that the differential forms $\frac{xdx+ydy}{(x^2+y^2)^p}$, $\frac{ydx-xdy}{(x^2+y^2)}$ are locally exact at each point of $\mathbb{R}^2 \setminus \{0,0\}$. Let \mathcal{U} be one of: $\mathbb{R}^2 \setminus \{0,0\}$, $\mathbb{R}^1_{x>0} \times \mathbb{R}^1_y$, $\mathbb{R}^2 \setminus \{y=0,x\leq 0\}$. In which cases are these forms exact on \mathcal{U} ?
- **5.** Pass from the (x,t)-coordinates to the polar coordinates (r,ϕ) . Accordingly transform the equation $x' = f(\frac{x}{t})$ into $\frac{dr}{d\phi} = r \cdot \Phi(\phi)$. Here the function Φ is 2π -periodic and possibly not defined on some (discrete) set of points. Define $p:=\int_0^{2\pi}\Phi(\phi)d\phi$, suppose this integral converges.
 - a. Describe the integral curves in the cases p > 0, p = 0, p < 0. Prove: any local solution extends to a global one, $\mathbb{R}^1 \xrightarrow{r(\phi)} \mathbb{R}^1_{>0}$. Conclude: in (x,t) coordinates no local solution extends to a global $\mathbb{R}^1 \stackrel{x(t)}{\to} \mathbb{R}^1$, and for some initial conditions (which?) there is no existence/uniqueness.
 - **b.** As an explicit example analyze the solutions of $x' = \frac{C \cdot x t}{x + C \cdot t}$, for all constants $C \in \mathbb{R}$.
- **6.** Consider the equation $f \cdot dx + g \cdot dy = 0$. Suppose $g(x_0, y_0) \neq 0$.
 - **a.** Prove: There exists a local integrating factor of the form $\lambda(x)$ iff $\frac{f-g}{g}$ is locally independent of y. In this case $\lambda = C \cdot e^{\int^x (\frac{f-g}{g})ds}$. (We have proved this in the class.)
 - **b.** Obtain similar results for the existence of integrating factors in the forms $\lambda(x-y)$, $\lambda(x^2+y^2)$.
 - **c.** Solve the equations: i. $(t^2-x^2+1)+(t^2-x^2-1)x'=0$,
- ii. $ydx (x^2 + y^2 + x)dy = 0$.