Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 13. Not for submission

- **1. a.** Denote by $\mathbb{R}[[t]][t^{-1}]$ the set of (formal) Laurent power series with finite number of negative powers. Prove: $\mathbb{R}[[t]][t^{-1}]$ is closed under products, and every non-zero element is invertible. (Thus $\mathbb{R}[[t]][t^{-1}]$ is a field.)
	- **b.** For $f, g \in \mathbb{R}[[t]][t^{-1}]$ express $ord(f \cdot g)$, $ord(\frac{1}{t})$ $(\frac{1}{f}), \text{ord}(f^{(n)}), \text{ord}(e^f)$ via $\text{ord}(f), \text{ord}(g)$. What about $ord(f+g)$?
	- c. Given a Laurent power series $\sum_{-\infty}^{\infty} c_j t^j$ prove: there exist $0 \le r \le R \le \infty$ such that the series converges absolutely for $r < |t| < R$, and diverges at each point where $|t| > R$ or $|t| < r$. How to compute r, R via the coefficients $\{c_i\}$?
- 2. Consider the system $\underline{x}' = \frac{A}{tq+1}$ $\frac{A}{t^{q+1}}\underline{x}$, for $q \in \mathbb{Z}_{\geq 0}$ and $A \in Mat(\mathbb{R})$. **a.** Write down the real(!) solutions for $A =$ $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, with $a, b \in \mathbb{R}$.
	- **b.** Give the necessary and sufficient conditions on \overline{q} , A to ensure:
		- i. This is a regular singular point.
		- ii. There exists a solution bounded near $t = 0$.
		- iii. There exists a solution with a pole.
		- iv. A solution is bounded for $t > 0$ if and only if it is bounded for $t < 0$.
		- v. All the solutions are power series with integer exponents.
- **3. a.** Consider the system $\underline{x}' = (\frac{A_0}{t} + A_1)\underline{x}$. When does there exist a solution bounded near $t = 0$? When are all the solutions power series with integer exponents? Suppose $A_0A_1 = A_1A_0$. Write the solutions.
	- **b.** Prove: the system $x'_1 = x_2, x'_2 = 2\frac{x_1}{t^2}$ has a regular singular point. (Hint: look for monomial solutions.)
	- c. Suppose $A(t)$ has a singularity at $t = 0$. Is every (non-zero) solution of $\underline{x}' = A(t) \cdot \underline{x}$ necessarily singular at $t=0$?
	- d. Suppose the matrix $A(t)$ has a singularity at $t = 0$, but there exists an analytic fundamental matrix $\mathbb{X}(t)$ for $\underline{x}' = \overline{A(t)}\underline{x}$. Prove: $det[\mathbb{X}(0)] = 0$.
- **4. a.** Consider the equation $t^2x'' + ta_1x' + a_0x = 0$. Give the necessary and sufficient conditions on $a_1, a_0 \in \mathbb{R}$ to ensure:
	- i. There exists a bounded solution.
	- ii. There exists a global solution $x(t) \in C^0(\mathbb{R}^1)$.
	- iii. Every solution has at most a pole at $t = 0$. Express the order of the pole in terms of $a_0, a_1.$
	- **b.** Write the power series solutions for Bessel's equation $t^2x'' + tx' + (t^2 a^2)x = 0$. What is the domain of convergence?
	- c. Write the power series solutions at $t = \pm 1$ for Legendre's equation $(1 t^2)x'' 2tx' + 4(a +$ $1(x = 0$. What is the domain of convergence for each point? (Wiki: Legendre polynomials)
	- **d.** Prove: the series $\sum_{j=0}^{\infty} j!t^j$ is a formal solution of the equation $t^2x'' + (3t-1)x' + x = 0$. Can this equation be transformed into Bessel's equation by time change, $t = g(\tau)$, and rescaling, $x \to h(t) \cdot x$, for some functions $g, h \in C^{\omega}$?
	- **e.** Write the general solution of $(2x 3x^2)y'' + 4y' + 6xy = 0$. (Hint: there exists a polynomial solution) What are the types of the singular points?