Ordinary differential equations for Math (201.1.0061. Spring 2021. Dmitry Kerner) Homework 13. Not for submission

- a. Denote by ℝ[[t]][t⁻¹] the set of (formal) Laurent power series with finite number of negative powers. Prove: ℝ[[t]][t⁻¹] is closed under products, and every non-zero element is invertible. (Thus ℝ[[t]][t⁻¹] is a field.)
 - **b.** For $f, g \in \mathbb{R}[[t]][t^{-1}]$ express $ord(f \cdot g), ord(\frac{1}{f}), ord(f^{(n)}), ord(e^{f})$ via ord(f), ord(g). What about ord(f+g)?
 - **c.** Given a Laurent power series $\sum_{-\infty}^{\infty} c_j t^j$ prove: there exist $0 \le r \le R \le \infty$ such that the series converges absolutely for r < |t| < R, and diverges at each point where |t| > R or |t| < r. How to compute r, R via the coefficients $\{c_j\}$?
- **2.** Consider the system $\underline{x}' = \frac{A}{t^{q+1}}\underline{x}$, for $q \in \mathbb{Z}_{\geq 0}$ and $A \in Mat(\mathbb{R})$. **a.** Write down the real(!) solutions for $A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, with $a, b \in \mathbb{R}$.
 - **b.** Give the necessary and sufficient conditions on q, A to ensure:
 - i. This is a regular singular point.
 - ii. There exists a solution bounded near t = 0.
 - iii. There exists a solution with a pole.
 - iv. A solution is bounded for t > 0 if and only if it is bounded for t < 0.
 - \mathbf{v} . All the solutions are power series with integer exponents.
- **3. a.** Consider the system $\underline{x}' = (\frac{A_0}{t} + A_1)\underline{x}$. When does there exist a solution bounded near t = 0? When are all the solutions power series with integer exponents? Suppose $A_0A_1 = A_1A_0$. Write the solutions.
 - **b.** Prove: the system $x'_1 = x_2$, $x'_2 = 2\frac{x_1}{t^2}$ has a regular singular point. (Hint: look for monomial solutions.)
 - **c.** Suppose A(t) has a singularity at t = 0. Is every (non-zero) solution of $\underline{x}' = A(t) \cdot \underline{x}$ necessarily singular at t=0?
 - **d.** Suppose the matrix A(t) has a singularity at t = 0, but there exists an analytic fundamental matrix $\mathbb{X}(t)$ for $\underline{x}' = A(t)\underline{x}$. Prove: $det[\mathbb{X}(0)] = 0$.
- **4. a.** Consider the equation $t^2x'' + ta_1x' + a_0x = 0$. Give the necessary and sufficient conditions on $a_1, a_0 \in \mathbb{R}$ to ensure:
 - i. There exists a bounded solution.
 - ii. There exists a global solution $x(t) \in C^0(\mathbb{R}^1)$.
 - iii. Every solution has at most a pole at t = 0. Express the order of the pole in terms of a_0, a_1 .
 - **b.** Write the power series solutions for Bessel's equation $t^2x'' + tx' + (t^2 a^2)x = 0$. What is the domain of convergence?
 - c. Write the power series solutions at $t = \pm 1$ for Legendre's equation $(1 t^2)x'' 2tx' + 4(a + 1)x = 0$. What is the domain of convergence for each point? (Wiki: Legendre polynomials)
 - **d.** Prove: the series $\sum_{j=0}^{\infty} j! t^j$ is a formal solution of the equation $t^2 x'' + (3t-1)x' + x = 0$. Can this equation be transformed into Bessel's equation by time change, $t = g(\tau)$, and rescaling, $x \to h(t) \cdot x$, for some functions $g, h \in C^{\omega}$?
 - e. Write the general solution of $(2x 3x^2)y'' + 4y' + 6xy = 0$. (Hint: there exists a polynomial solution) What are the types of the singular points?